TEACHER GUIDE

pH, Indicators & Dyes

TEACHER GUIDE

pH, Indicators & Dyes Kit

TEACHING STRATEGY

Kit activities are designed for introductory (grades 6-8) and intermediate-level / high school (grades 8-9) students. There are a total of 6 discrete Model investigations, 3 Inquiry Path investigations, and 2 Going Further investigations.

ACTIVITY 1 can be done independently with introductorylevel students. ACTIVITIES 2, 3 and 4 are linked - each precedes the other and are recommended for advanced middle school or high school-level students.

TEACHER GUIDE

ACTIVITY I pH, Indicators & Dyes

This kit supports 40 students

working in groups of 4

KIT CONTENTS

40 medicine cups

- 10 cotton fabric (4" squares)
- 10 plastic jars , with lids (2oz)
- 100 commercial filter paper strips (1 x 4")
- box, (72) microscope slides
- pH paper strips, pkg./100 (0 to 14)
- 10 pipets
- 10 clothespinsI sheet, black construction paper
- ball, twine (50')

CD-ROM

- TEACHER GUIDE set PDF
- STUDENT GUIDE set PDF
- ACTIVITY I Learning About pH, Indicators, and Dyes PDF
- ACTIVITY 2 Learning About the Chemistry of Plant Pigments PDF
- ACTIVITY 3 Learning About Making pH Paper Test Strips PDF
- ACTIVITY 4 Learning About Testing and Accuracy PDF
- BACKGROUND INFORMATION set PDF
 - PH, INDICATORS, & DYES (INTRODUCTORY) PDF
 - PIGMENT EXTRACTION (INTRODUCTORY) PDF
 - PLANT PIGMENT BIOMOLECULES & THEIR STRUCTURE (INTERMEDIATE) PDF PH & POH (INTERMEDIATE) PDF
 - PLANT PIGMENTS AS PH INDICATORS (INTRODUCTORY) PDF
- ALTERING PLANT PIGMENT BIO MOLECULES (INTERMEDIATE) PDF LEARNING HOW LITMUS PAPER IS MADE (INTERMEDIATE) PDF
- Learning About pH PPT and .MOV (with Study Notes (PDF))

NEEDED BUT NOT SUPPLIED

From the grocery store

Bag, Blueberries (bag, fresh or frozen) ACTIVITIES: 1,2 Box, Baking soda (sodium bicarbonate) ACTIVITY I Bottle, White vinegar (acetic acid) ACTIVITIES: 1, 2, 3

10+ Bottles water (8 oz; 240mL), or distilled water ACTIVITIES: 1,2,3 Container, lemon / lime juice concentrate ACTIVITIES: 1,2,3 Container, carbonated water, apple juice ACTIVITIES: 1, 2, 3 Container, table salt or rock salt ACTIVITIES: 1, 2, 3 Container, liquid household detergent, hand soap ACTIVITIES: 1, 2, 3 Container, liquid household ammonia / bleach ACTIVITIES: 1, 2, 3 Package, Ammonium Aluminum Sulfate¹ - optional ACTIVITY: 1 Package, Drano® ACTIVITY: 2

From a local source / school / home

- 10 Pairs of scissors ACTIVITIES: 1, 3
- 10 Plastic spoons ACTIVITIES: I
- 20 Sheets, white copy paper ACTIVITIES: I
- 10 Coffee filters ACTIVITIES: I
- 10 Sheets, acid-free paper (fine stationary paper) ACTIVITIES: I
- 10 Sets, colored pencils / colored markers ACTIVITIES: I
- 10 Sheets, watercolor paper (optional) ACTIVITIES: I
- 10 Microscope slides ACTIVITY 2b
- 10 Marking pens ACTIVITIES: 1, 2

ACCESSING DIGITAL CONTENT

FILE TYPES:

.pdf - portable digital file (Mac / PC) notes.pdf - powerpoint pdf with lecture notes .pps - powerpoint (PC) .mov - Quick Time iPod .mov Quick Time (iPod / iPad)

NOTE: Animations play within PDF files

See: Content Delivery Information to learn more!

PACING CHARI

INFORMATION TABLE 1				
ACTIVITY / Level	Model Investigations	Inquiry Path Investigations		
1 INTRODUCTORY	1a Blueberries as Biological Indicators (40 minutes)	Dye Color Design (40 minutes)		
	1b Blueberries as a Fabric Colorant (40 minutes)	The Blueberry Cyanidin Molecule as a pH Indicator (40 minutes)		
		GOING FURTHER: Exploring Natural Dyes in Fabrics (40 minutes)		
2 INTERMEDIATE	2a The Blueberry Cyanidin Molecule as a pH Indicator	Determine pH range for a biopigment (40 minutes)		
	2b Converting a Chlorophyll Molecule to a Phaeophytin Molecule (30 minutes)			
3 INTERMEDIATE	Making pH Paper Test Strips (40 minutes)	GOING FURTHER: Exploring Colored Paper as pH Indicators (40 minutes)		
4 INTERMEDIATE	Evaluating pH Paper Test Strips (40 minutes)			

PREP & EXPERIMENT TIMES

INFORMATION TABLE 2 Expected prep and Experimental Run Times			
ACTIVITY	PREP	LAB	
1a Blueberries as Biological Indicators	10 minutes	40 minutes	
1b Blueberries as a Fabric Colorant	20 minutes	40 minutes	
INQUIRY PATH: Dye Color Design	20 minutes	40 minutes	
INQUIRY PATH: The Blueberry Cyanidin Molecule as a pH Indicator	20 minutes	40 minutes	
GOING FURTHER: Exploring Natural Dyes in Fabrics	20 minutes	40 minutes	
2a The Blueberry Cyanidin Molecule as a pH Indicator	30 minutes	30 minutes	
2b Converting a Chlorophyll Molecule to a Phaeophytin Molecule	20 minutes	30 minutes	
INQUIRY PATH: Determine pH range for a Bio Pigment	20 minutes	40 minutes	
3 Making pH Paper Test Strips	20 minutes	40 minutes	
GOING FURTHER: Exploring Colored Paper as pH Indicators	20 minutes	40 minutes	
Evaluating pH Paper Test Strips	10 minutes	40 minutes	

ACTIVITY 1 INTRODUCTORY INVESTIGATION

Learning About pH, Indicators, and Dyes

OVERVIEW

In this structured investigation, students learn about biological pigments; how they can be used as pH indicators and be manipulated as fabric colorants.

OBJECTIVES

• *To understand* the difference between a biological pigment, a dye, and other kinds of pigments as chemical compounds.

• To understand what solvents are, and how biological pigments can be extracted.

- To understand the concept of pH and the role of biological indicators.
- To design extraction methods for harvesting biological pigments in water-based solutions.
- > To use extracted biological pigments as indicators.
- To dye fabric swatches.

MATERIALS (Per Class)

In the Kit:

- 40 medicine cups
- 10 cotton fabric squares
- 10 plastic jars, with lids (2oz)
- 10 clothespins
- ball, twine (50')
- CD-ROM

Needed but not supplied:

From the grocery store

- 1 bag, Blueberries (bag, fresh or frozen)
- 1 box, Baking soda (sodium bicarbonate)
- 1 bottle, White vinegar (glacial acetic acid)
- 10+ bottles water (8 oz; 240mL) or distilled water

Needed but not supplied (cont.)

- 1 container, lemon / lime juice concentrate (STRONG ACID examples)
- 1 container, carbonated water, apple juice (WEAK ACID examples)
- 1 container, table salt or rock salt (VERY WEAK ACID examples)
- 1 container, liquid household detergent, hand soap (WEAK BASE examples)
- 1 container, liquid household ammonia / bleach (STRONG BASE examples)
- 1 Bottle, Ammonium Aluminum Sulfate² optional

From a local source / school / home:

- 10 pairs of scissors
- 10 plastic spoons
- 20 sheets, white copy paper
- 10 coffee filters
- 10 sets, colored pencils / colored markers

BEGINNINGS ...

Have your students read the checked information topics:

Background Information Topics

- ✓ pH, INDICATORS, & DYES
- ✓ PIGMENT EXTRACTION?
 - PLANT PIGMENT BIOMOLECULES & THEIR STRUCTURE pH & POH PLANT PIGMENTS AS pH INDICATORS ALTERING PLANT PIGMENT BIO MOLECULES LEARNING HOW LITMUS PAPER IS MADE
- Have students research the answers to these questions ...

(Students can obtain answers using *Background Information* and other web resources, as you direct.)

TEACHERS NOTE: These topics are available as individual PDF files on the CD-ROM. They can be emailed or uploaded to the school server. *Background* material is available to students as individual topic PDFs.

- Define and give an example of a universal solvent.
 Water. Most chemical compounds can be dissolved in it.
- Is a pigment a dye? organize your answer in an information table.
 In some ways, and not in others:

Information Table 1				
Characteristic	Dye	Pigment		
Chemical Compound (consisting of 2 or more atoms)	~	~		
Easily Dissolves (is soluble in)	~			
Present in living things		✓ (biological pigment)		
Appear colored due to light reflection	V	~		
Man-made colored substance	~	~		
Natural colored substance	~	~		

- ✓ What is the bio pigment in blueberries? The red/blue flavonoid bio pigment cyanidin.
- What is the usual purpose of biological pigment extraction? To obtain a colored, transparent solution.
- What is an indicator solution? A solution that indicates, through a color change, the presence of an acid or alkali (acid or base).
- ✓ What is pH; what are acids and alkalis? pH is a numerical measure of how acidic or basic a solution and/or substance is. pH is measured on a pH scale: (0) STRONG ACID to (14) STRONG BASE.

An acid is a chemical compound that has a pH less than 7.

A base is a chemical compound having a pH greater than 7.

- Can extracted biological pigments be both dyes and indicators?
 Yes.
- What is vinegar and baking soda? What are their chemical formulae?
 vinegar is a 5-7% solution of acetic acid baking soda is sodium bicarbonate
 NaHCO₃
- What is the pH of vinegar and baking soda?
 vinegar is pH 3
 baking soda is pH 9
- If an acid is reacted with a base, what happens?
 A chemical compound called a salt is produced, along with water.

GETTING STARTED ...

MODEL INVESTIGATION 1a - Blueberries as biological indicators introduces students to:

- *Extraction* of a biological pigment (cyanidin, an anthocyanin in the skin of blueberries See: *Information Table 2*) to create a *colored*, *transparent*, *water solution*
- *Visual recognition* that this extracted pigment is an indicator changes color with the change in pH
- Students will use this model investigation as a guide in designing an extraction method to produce a biological dye to color a fabric a color (at a specific pH).

MODEL INVESTIGATION 1b - Blueberries as a Fabric Colorant introduces students to:

- Dyeing a fabric swatch using an extracted biological pigment.
- Students will use this model investigation as a guide in designing a method to dye fabric a specific color.

PREP NOTES

- Provide the following materials and work areas:
- ✓ bottle of white vinegar (weak acid)
- ✓ box of baking soda (weak base)
- set up a 'drying area' by installing a string 'clothesline' in the classroom for student use
- Provide the following materials for each student group:
- ✓ 4 medicine cups
- ✓ 3 blueberries (fresh or frozen)
- ✓ I plastic jar (2oz), filled with bottled or distilled water▲
- I bottle water (8oz; 240mL)
- I plastic spoon
- I sheet, copy paper
- I fabric swatch
- 1 scissors

▲ Do not use tap water which has chlorine, it can interfere with the extraction

 (INVESTIGATION 1a) Following 15 minutes of blueberry anthocyanin extraction, visit each group and add:

Cup #1 a pinch of baking soda (enough to change the pH to dark blue) Cup #2 nothing

Cup #3 1 capful (3mL) vinegar (enough to change the pH to a pink color)

TEACHERS NOTE

One key action is that students observe the leaching of the bio pigment, cyanidin, directly from the skin of the blueberry - without any application of heat, or physical maceration. They should conclude that water is the solvent - forming a colored solution. These same blueberries are then set aside - ready for use in the INQUIRY PATH.