CONSIDERATIONS IN UTI DETECTION AND POTENTIAL IMPACT ON ANTIBIOTIC STEWARDSHIP

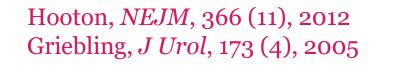
ERIN H. GRAF, PHD, D(ABMM)

Director, Infectious Disease Diagnostics Laboratory

Assistant Professor, Clinical Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania

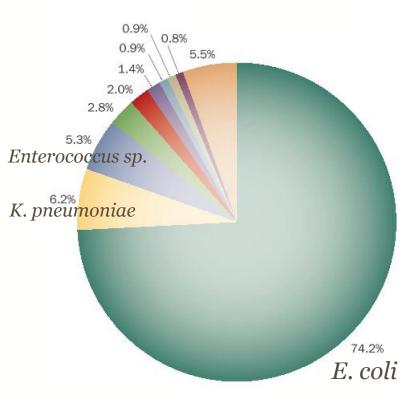
LEARNING OBJECTIVES

- Describe the traditional and advanced methods for diagnosing UTIs and their impact on patient care
- Examine how the inappropriate use of antibiotics to treat UTIs has led to increased antibiotic resistance
- Discuss the effects of UTI diagnosis and treatment on healthcare dollars, time, and patient outcomes


OUTLINE

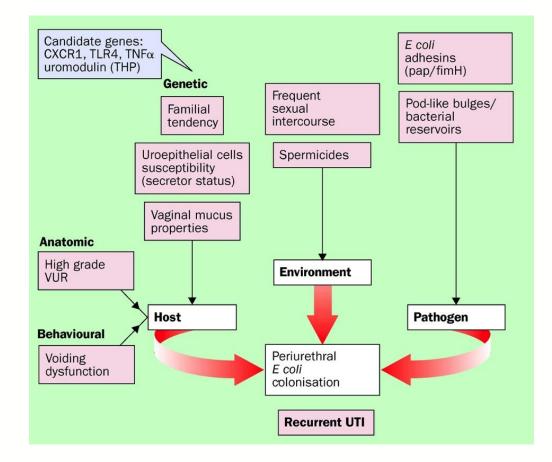
- Clinical context
- Current diagnostic testing
- Over-treatment and antimicrobial resistance
- Emerging methods for UTI diagnosis
- Potential impact of emerging methods on antimicrobial stewardship

URINARY TRACT INFECTIONS


- A leading cause of health care visits
 - Estimated >8 million adult health care visits
 - Estimated >1 million pediatric visits
 - Estimated >\$3 billion in annual health care spending in the US
 - Lifetime risk of ~50% for women
- Leading cause of nosocomial infection
 - Catheter-associated UTIs in long-term care facilities and hospitals

URINARY TRACT INFECTIONS

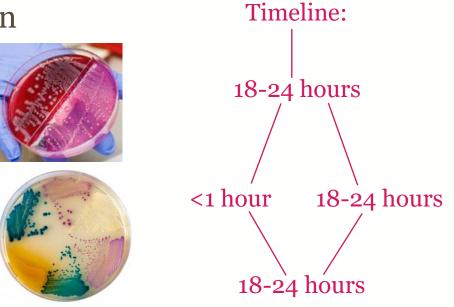
- A leading cause of antibiotic prescriptions
 - Prevent pyelonephritis, urosepsis
- Empiric therapy for uncomplicated cystitis
 - Selection may depend upon local antibiogram
- Culture-guided therapy for pyelonephritis
- Culture-guided therapy for complicated UTI

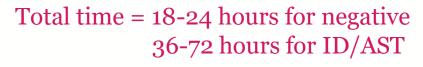


Foxman, Nat Rev Urol 7(12) 2010

URINARY TRACT INFECTIONS

- Risk factors
 - Host
 - Genetics
 - Anatomy
 - Behavior
 - History of UTI


Finer et al, Lancet ID 4(10) 2004



CURRENT TESTING FOR UTI

- Gold standard = Urine Culture
 - Generally 1st or 2nd highest volume testing in clinical microbiology laboratories
 - Semi-quantitative plating
 - Significance of quantity varies by population
 - Pathogen identification
 - Chromagar
 - MALDI-TOF mass spectrometry
 - Automated biochemical identification
 - Antimicrobial susceptibility testing (AST)

Need faster way to predict who has a UTI

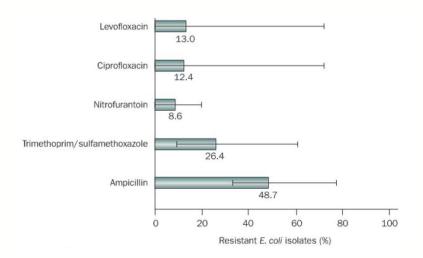
CURRENT TESTING FOR UTI

- Urinalysis
 - Point of care
 - Rapid automated
- In-house defined criteria for "positive"
 - Highly variable
 - Impacts sensitivity and specificity
- Numerous large clinical studies
 - Wide range for sensitivity and specificity
 - Some studies as low as 50% for both

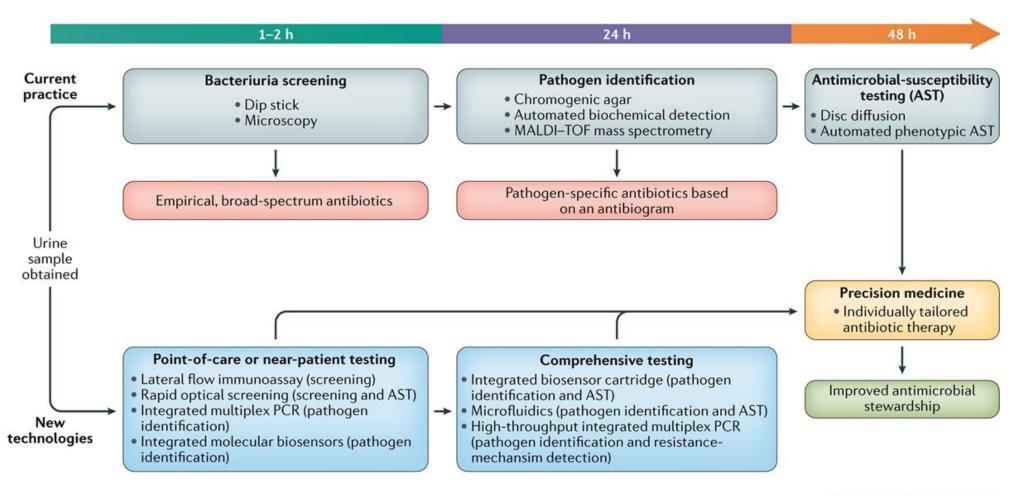
- Asymptomatic bacteriuria
 - Positive urine culture in the absence of symptoms
- Limitations of current approaches to UTI testing
 - Non-specific screen (urinalysis)
 - Slow confirmatory testing (culture)

- Asymptomatic bacteriuria (AsB) is common
 - Higher rates with catheterization
 - Est 3-10% per day risk of bacteriuria
 - AsB is a risk factor for UTI
 - Screening and treatment of AsB only recommended for:
 - Pregnant women
 - Prior to invasive urologic procedures
 - Inappropriate testing for and treatment of AsB is common
 - 20-80% of AsB inappropriately tested/treated
 - Factors that influence treatment include age of patient and laboratory test results

Trautner et al, *CID* 48(9) 2009 Shales et al, *CID* 25(3) 1997



- Non-specific screen paired with delayed confirmatory testing
- Prospective adult ED study¹
 - 47% of patients received treatment for a positive UA but had a negative culture
 - 13% of patients were symptomatic with a positive culture but had a negative UA
- Pediatric retrospective analysis²
 - ~50% of patients treated for UTI did not need the rapy
 - Culture negative
 - Most had "positive" urinalysis
 - Treated with agents for which resistance is increasing


• Impact of overtreatment

- Individual risks
 - Alterations in microbiome
 - Clostridium difficile disease
 - Selection for antimicrobial resistant organisms for next UTI
- Population risks
 - Spread of antimicrobial resistance
 - Continually increasing for TMP/SXT, Quinolones and 1st/2nd generation cephalosporins

Foxman, Nat Rev Urol 7(12) 2010

Nature Reviews | Urology

FASTER AND MORE ACCURATE UTI DIAGNOSIS

Diagnostic Goals:

Rapidly identify negatives

- Treat only those with symptomatic UTI
 - Avoid treating symptomatic patients without UTI
- Treat with pathogen-targeted therapy Rapidly identify bacterial species in positives
- Treat with pathogen-susceptible therapy

Rapidly perform susceptibility testing

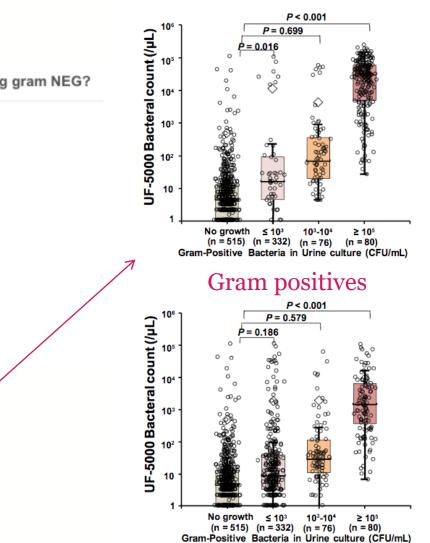
EMERGING METHODS FOR FASTER UTI DIAGNOSIS

- Flow cytometry
- MALDI-TOF Mass Spectrometry (MS)
- Molecular approaches
- Laser light scattering

FLOW CYTOMETRY

- FDA cleared platforms for sediment portion of UA
 - User defined cutoffs impact sensitivity and specificity
 - Broeren et al showed 80% specificity with 0.3 false negative rate¹
 - Inigo et al showed 79% specificity with 1.9% false negative rate²
- Advanced models with capacity to discriminate Gram-negative from Gram-positive bacteria
 - Based on differential dye uptake and light scatter profiles
- Provide bacterial counts per microliter

¹Broeren et al *J Clin Microbiol* 49, 2011 ²Inigo et al *Clin Chem Acta* 456, 2016



Gram negatives

FLOW CYTOMETRY

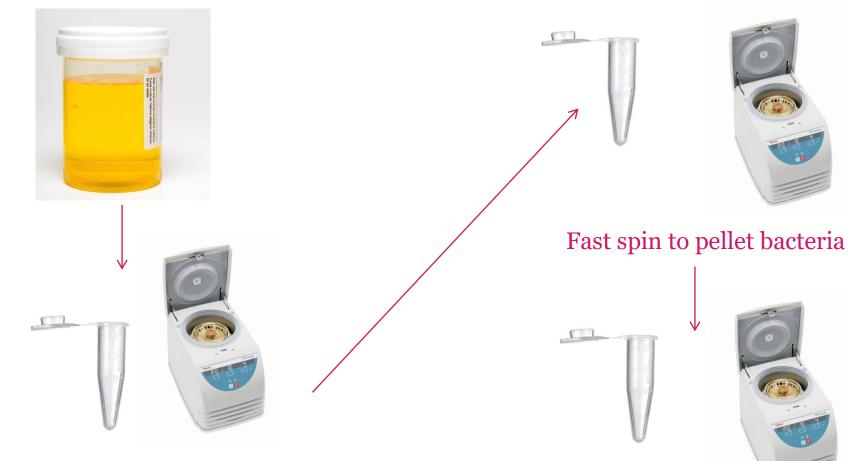
Bact Info flag from urine culture identification or by Gram stain UF-5000 Bact Info flag gram NEG? Gram negatives 411 Gram positives + Gram negatives 24 39 Mixed flora (All the samples showed presence of Gram negatives) Gram positives Yeasts 0 Culture negative (no growth or <10⁵CFU/mL) 18 493 Total De Rosa et al, Clin Chim Acta 484, 2018 93% specific for GN

90% specific for GN in second recent study: Kim et al *J Clin Micro* doi:10.1128/JCM.02004-17, 2018

Children's Hospital of Philadelphia

FLOW CYTOMETRY

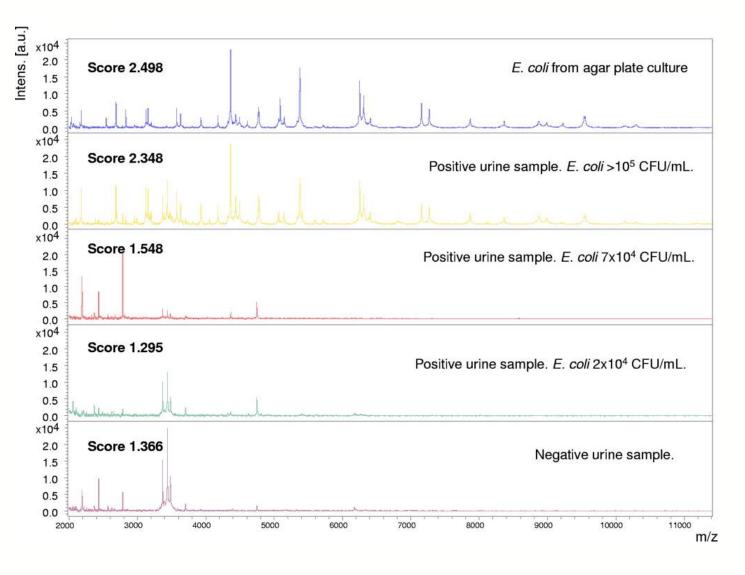
- FDA cleared platforms available
- High throughput and fast
- Good performance to screen negatives
- User defined criteria and validation needed
- Bacterial differentiation shows promise but ~90% specific for GN



MALDI-TOF MS DIRECTLY FROM URINE

- MALDI-TOF MS widely used for bacterial identification in clinical laboratories
- Instruments have reference spectra for UTI-associated bacteria
- Urine has low human protein content
- Instruments have limit of detection ~10,000 colony forming units
 - Concentrate bacteria from 1mL of urine

MALDI-TOF MS DIRECTLY FROM URINE



Slow spin to remove white cells

Washes to eliminate interference

MALDI-TOF MS DIRECT FROM URINE

Ferreira et al. J Clin Microbiol. 2010;48:2110-2115

MALDI-TOF MS DIRECT FROM URINE

Conventional identification (no. of cases)		MALDI-TOF MS identification (no. of cases)		
Negative (20)		Negative (20)		
Positive, 2 morphology colony types (5)		Not reliable identification (2)		
		Microorganism identification (3) ^a		
Positive, 1 morphology colony type (235)		Positive with same identification (205) ^b		
		Positive with different identification (2)		
		Negative or not reliable identification (28) ^c		

14 with <100,000 cfu/mL

Conventional identification (no. of isolates)	Correlation (%) at:		MALDI-TOF MS identification (no. of isolates)		
	Species level	Genus level			
Escherichia coli (167)	97.6	97.6	Escherichia coli (163)		
			No reliable identification (4) <		
Klebsiella pneumoniae (7)	100	100	Klebsiella pneumoniae (7)		
Klebsiella oxytoca (9)	77.8	77.8	Klebsiella oxytoca (7)		
			No reliable identification (2) <		
Citrobacter freundii (1)	100	100	Citrobacter freundii (1)		
<i>Citrobacter koseri</i> (1)	100	100	Citrobacter koseri (1)		
Enterobacter cloacae (6)	83.3	83.3	Enterobacter cloacae (5)		
			No reliable identification (1) <		
Enterobacter asburiae (1)	0	100	Enterobacter sp. (1)		
Serratia marcescens (2)	100	100	Serratia marcescens (2)		
Proteus mirabilis (5)	80	80	Proteus mirabilis (4)		
			No reliable identification (1)		
Morganella morganii (1)	100	100	Morganella morganii (1)		
Pseudomonas aeruginosa (2)	50	50	Pseudomonas aeruginosa (1)		
			No reliable identification (1) 🗧		
Raoultella planticola (2)	0	50	Raoultella ornithinolytica (1)		
			Escherichia coli (1)		
Raoultella ornithinolytica (1)	0	0	Citrobacter sp. (1)		
Enterococcus faecalis (12)	66.7	66.7	Enterococcus faecalis (8)		
			No reliable identification (4) 🖌		
Staphylococcus aureus (2)	100	100	Staphylococcus aureus (2)		
Streptococcus agalactiae (1)	0	0	No reliable identification (1)		
Total (220)	91.8	92.7			

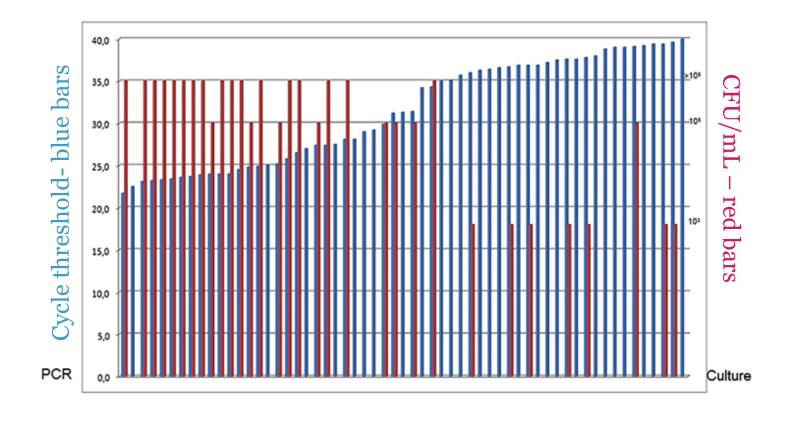
Ferreira et al. J Clin Microbiol. 2010;48:2110-2115

MALDI-TOF MS DIRECT FROM URINE

- Performs well for mono-microbial UTI >100,000 cfu/mL
 - Species identification in <1 hour
- Inexpensive for labs with MALDI-TOF MS
- Cumbersome laboratory developed protocols
 - Labor-intensive
 - No FDA approved approaches
- Sensitivity lower than needed for screening
 - Maximum reported sensitivity of 88%*
 - Negatives would still need to be plated

- Amplification and detection of most common pathogens
 - Sequenced-based approaches may allow for pan-pathogen detection
- Possibility for quantification
- Laboratory developed assays
- Modifications of commercially available assays

Modification of a commercially available PCR
PCR designed for Sepsis


	Exclusively Microbiology positive	Exclusively SeptiFast [®] positive	Microbiology and SeptiFast [®] positive	Microbiology and SeptiFast [®] negative	Concordance [%]
Escherichia coli	4	1	32	45	77/82 [94]
Klebsiella pneumonia	2	0	6	74	80/82 [98]
Serratia marcescens	0	1	0	81	81/82 [99]
Enterobacter	1	2	0	79	79/82 [96]
Proteus mirabilis	2	0	0	80	80/82 [98]
Pseudomonas aeruginosa	0	2	1	79	80/82 [98]
ılase-negative vlococci	14	3	7	58	65/82 [79]
ylococcus aureus	1	2	2	77	79/82 [96]
ococcus pneumoniae	0	1	0	81	81/82 [99]
ococcus spp	6	2	1	73	74/82 [90]
ococcus spp.	4	6	6	66	72/82 [88]
Candida albicans	2	5	2	73	75/82 [91]
Candida glabrata	0	1	0	81	81/82 [99]
Candida crusei	0	0	1	81	82/82 [100]

82% Sensitivity 60% Specificity

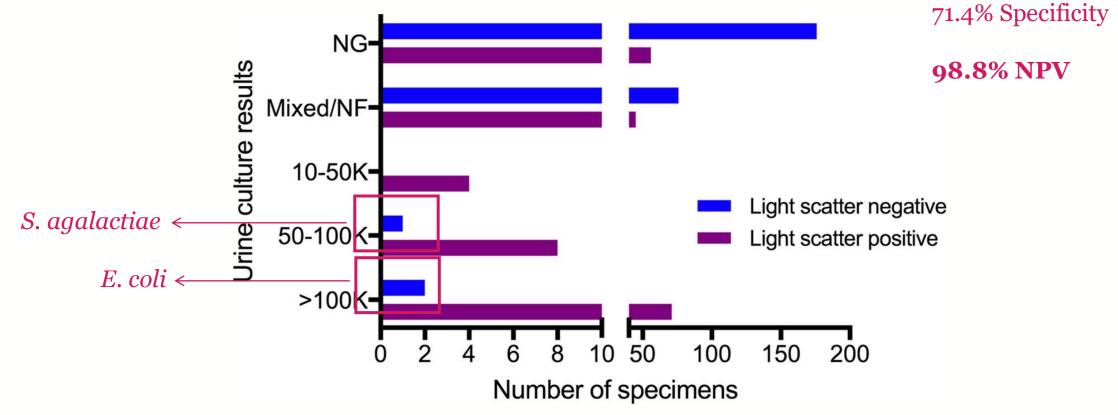
Lehmann LE et al, *PLOS ONE* 6(2): e17146 2011

• Laboratory developed PCR and the potential for quantitative analysis

Van der Zee et al *PLOS One* 11(3) 2016

- No FDA approved assays available
 - Extensive validation required
- Expensive
- Likely need to batch, slows down turn around time
- Too sensitive in some settings
 - Increased detection of urogenital flora

- Early models commercially available over 30 years ago
- BacterioScan 216Dx UTI System
 - FDA approved in May of 2018
 - Measures urine + broth turbidity over ~3 hours
 - Software interprets turbidity into growth curve
 - Negative results can be reported at ~3 hour mark
 - No need for downstream culture
 - Positive results reflex to culture
 - LOD of 10,000 cfu/mL



- Prospective pediatric study
 - Comparison with conventional culture of 439 specimens
 - 307 Clean catch and 132 straight catheterized specimens
 - 86 (19.6%) culture positive with significant quantity of uropathogen
 - 73 (85% of positives) with >100,000 cfu/mL of *E. coli*

• Prospective pediatric study

96.5% Sensitivity

Montgomery et al. J. Clin. Microbiol. 2017;55:1802-1811

- Similar sensitivity and NPV in clinical trial (50,000 cfu/mL cutoff)
 - 97.7% sensitivity
 - 99.2% NPV
- Limit of detections above 10,000 cfu/mL for several clinically relevant organisms:
 - P. aeruginosa
 - S. saprophyticus
 - S. agalactiae*
 - Aerococcus sp.
 - C. urealyticum

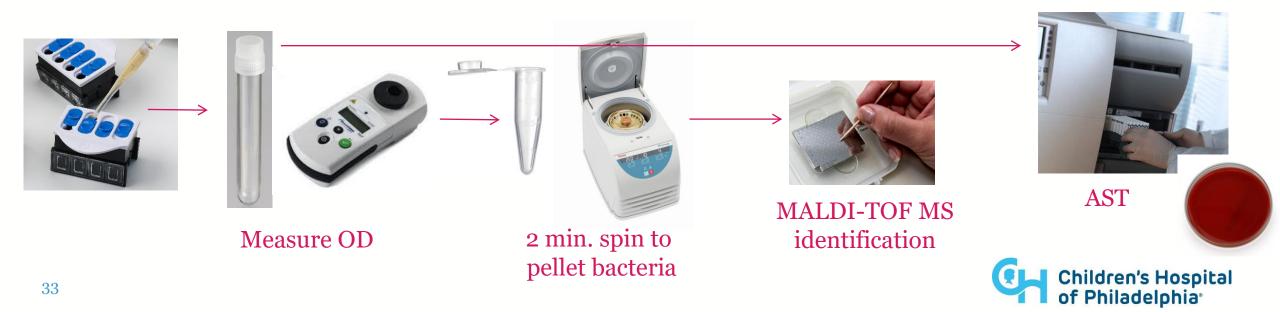
*Our study detected 2/2 with 10-50K and 2/3 with 50-100K of *S. agalactiae*

Our study did not evaluate *Aerococcus sp.* or *C. urealyticum*

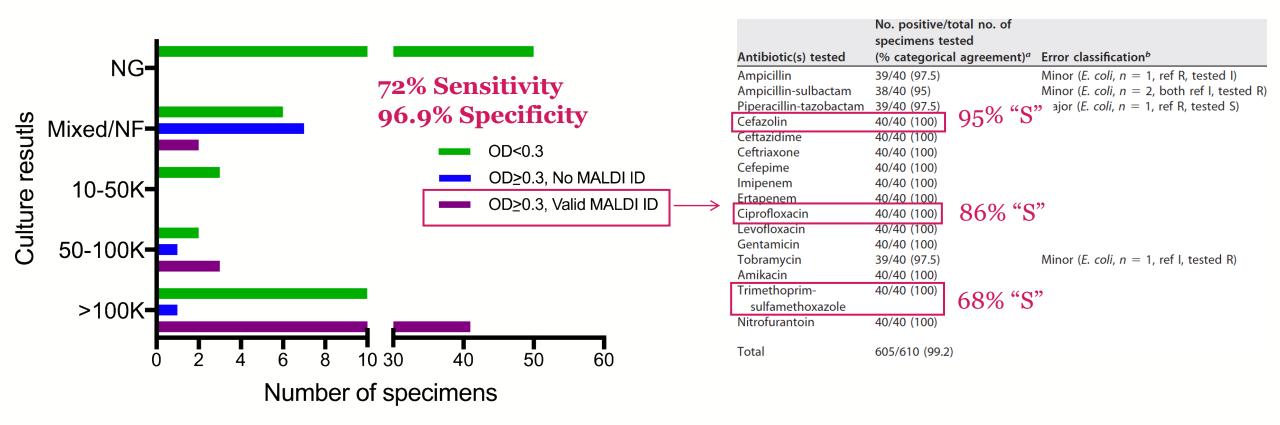
P. aeruginosa and *S. saprophyticus* positives were above 100K

- Prospective adult study
 - 610 urine samples
 - 588 clean catch
 - 138 (23%) with significant quantity of uropathogens
- 76% Sensitivity
 - 30 false negatives
 - Unclear if these could be asymptomatic bacteriuria

False Negative Bacterioscan

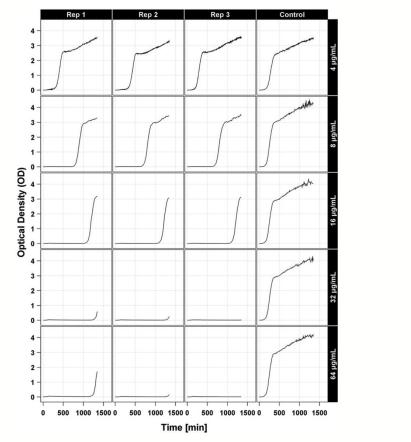

Organism	Quantity (CFU/mL)					
	>1 × 10 ⁵	5 × 10 ⁴ - 1 × 10 ⁵	1 × 10 ⁴ - 5 × 10 ⁴	<1 × 10 ⁴		
Enterobacter aerogenes	0	0	1	0		
Pseudomonas aeruginosa	0	0	2	0		
Streptococcus agalactiae	0	0	2	2		
Escherichia coli	0	3	3	0		
Yeast (Candida spp.)	0	0	6	0		
Klebsiella pneumoniae	0	1	3	0		
Klebsiella oxytoca	0	0	1	0		
Stenotrophomonas maltophilia	0	1	0	0		
Proteus mirabilis	0	0	1	0		
Enterococcus faecalis	0	0	1	0		
Enterococcus faecium	0	0	2	0		

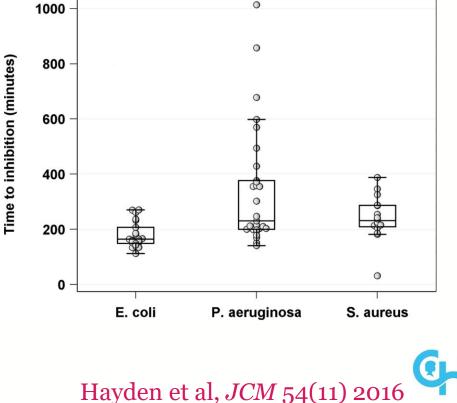
Roberts et al *Lab Med* 49(1) 2017



LIGHT SCATTER DETECTION PAIRED WITH ID AND AST

- Can we provide rapid identification and faster AST of positives in addition to screening negatives?
 - Avoid treatment of symptomatic patients without UTI
 - Treat with pathogen-targeted therapy
 - Treat with pathogen-susceptible therapy


LIGHT SCATTER DETECTION PAIRED WITH ID AND AST



LIGHT SCATTER FUTURE APPLICATIONS: AST

- Isolates in broth tested in triplicate
- Compared with Vitek and Microscan MICs

Children's Hospital

of Philadelphia[®]

LIGHT SCATTER FUTURE APPLICATIONS: AST

		MIC in µg/ml (result) by:		
	Bacterium, ID no., and antibiotic	BacterioScan	MicroScan	Vitek ^a	
	E. coli (ESBL)				
	3267				
	Cefepime	32 (R)	8 (SDD)	No MIC (R)	
	Ciprofloxacin	>8 (R)	>2 (R)	≥ 4 (R)	
	Gentamicin	≤ 4 (S)	2 (S)	≤ 1 (S)	
	9992				
	Cefepime	>64 (R)	>16 (R)	No MIC (R)	
	Ciprofloxacin	>8 (R)	>2 (R)	≥ 4 (R)	
	Gentamicin	≤4 (S)	≤1 (S)	≤1 (S)	
	P. aeruginosa				
	2700				
	Cefepime	32 (R)	>16 (R)	$\geq 64 (R)$	
	Ciprofloxacin	≤ 1 (S)	≤0.5 (S)	No MIC (I)	
	Gentamicin	≤ 4 (S)	4 (S)	≤ 1 (S)	
	9018	- (- /	- (-)	- (-)	
	Cefepime	64 (R)	16 (I)	16 (I)	
	Ciprofloxacin	2 (I)	2 (I)	≥ 4 (R)	
	Gentamicin	32 (R)	>8 (R)	8 (I)	
Г	S. aureus (MRSA)				
L	3032				
L	Clindamycin	>8 (R)	≥ 4 (R)	$\geq 8 (R)$	
L	Moxifloxacin	>8 (R)	4 (R)	$\geq 8 (R)$	
L	Oxacillin	> 8 (R)	≥ 2 (R)	≥ 4 (R)	
L	6172	P 0 (II)	-2 (11)	-1(1)	
	Clindamycin	>8 (R)	≥ 4 (R)	$\geq 8 (R)$	
	Moxifloxacin	4 (R)	2 (R)	1 (I)	
	Oxacillin	>8 (R)	≥ 2 (R)	$\geq 4(R)$	
	E. coli (ATCC)				
	25922				
	Cefepime	≤ 4	≤2	≤1	
	Ciprofloxacin	≤1	≤0.5	≤0.25	
	Gentamicin	≤ 4	≤1	≤1	
	P. aeruginosa (ATCC)				
	27853				
	Cefepime	≤ 4	4	≤1	
	Ciprofloxacin	≤1	≤0.5	≤0.25	
	Gentamicin	≤4	2	≤1	
	S. aureus (ATCC)				
	29213				
	Clindamycin	≤1	0.5	≤0.25	
	Moxifloxacin	≤1	≤2	≤0.25	
	Oxacillin	≤1	≤0.25	0.5	

Hayden et al, *JCM* 54(11) 2016

LIGHT SCATTER FUTURE APPLICATIONS: AST

	MIC in µg/mi (result) by:			
Bacterium, ID no., and antibiotic	BacterioScan	MicroScan	Vitek ^a	
E. coli (ESBL)				
3267				
Cefepime	32 (R)	8 (SDD)	No MIC (R)	
Ciprofloxacin	>8 (R)	>2 (R)	≥ 4 (R)	
Gentamicin	≤4 (S)	2 (S)	≤ 1 (S)	
S. aureus (MRSA)				
3032				
Clindamycin	>8 (R)	≥ 4 (R)	$\geq 8 (R)$	
Moxifloxacin	>8 (R)	4 (R)	$\geq 8 (R)$	
Oxacillin	>8 (R)	≥2 (R)	$\geq 4(R)$	

MIC in μ g/ml (result) by:

88.9% agreement with Microscan 72% agreement with Vitek

Hayden et al, *JCM* 54(11) 2016

- FDA approved platform
 - Does not require user defined criteria/validation
- Cost-benefit may be reduction in antibiotic use
 - Post-implementation studies are needed
 - ~3 hour time to negative result may still be too slow
- Reduced burden for plating and culture reading in microbiology laboratories
- MALDI-TOF MS protocols for rapid identification insensitive
 - Alternative approaches for rapid identification
- Potential for rapid AST in addition to detection

UTI AND ANTIMICROBIAL STEWARDSHIP

Diagnostic Goals:

Rapidly identify negatives

- Treat only those with symptomatic UTI
 - Avoid treating symptomatic patients without UTI
- Treat with pathogen-targeted therapy Rapidly identify bacterial species in positives
- Treat with pathogen-susceptible therapy

THE FUTURE OF ANTIMICROBIAL STEWARDSHIP FOR UTI

- Platforms now FDA approved that allow for faster and more accurate identification of UTI
 - Reduce pool of negative specimens for culture
 - Avoid treatment of patients that would have negative cultures
- Potential for rapid ID and AST
 - Technology in development
 - Faster pathogen-targeted and individually tailored antimicrobial therapy

THE FUTURE OF ANTIMICROBIAL STEWARDSHIP FOR UTI

- Reduce the over-treatment of UTI
 - Clinicians can wait for more reliable laboratory result before treating
- Reduce the contribution of UTI over-treatment to antimicrobial emerging resistance
- Partnership between laboratories and stewardship prior to implementation of new technology
 - Prospective studies are needed

QUESTIONS?

