protein biology

thermoscientific invitrogen

Protein preparation handbook

Cell Iysis | Subcellular fractionation | Protease and phosphatase inhibition | Dialysis | Desalting | Concentration | Purification | Immunoprecipitation | co-Immunoprecipitation | Pull-down

Extract. Clean up. Purify. Immunoprecipitate.

We offer a full range of optimized reagents for efficient protein extraction and fractionation as well as the targeted inhibition of unwanted protease and phosphatase activity.

Our convenient devices and high-performance affinity resins and magnetic beads enable maximum yield for the purification, enrichment, and clean-up of proteins and antibodies for downstream applications.

Protein extraction

Protein extraction techniques vary depending on the source of the starting material, the location within the cell of the protein of interest, and the downstream application. Other important considerations include the preservation of protein activity and function as well as the reduction of background effects.

- **Tissue and cell lysis.** Historically, mechanical disruption has been used to lyse cells and tissues; our gentle, detergent-based solutions have been developed to efficiently lyse cells and enable the separation of subcellular structures without requiring physical disruption, providing high yields of active proteins.
- **Protein stabilization.** Cell lysis disrupts cell membranes and organelles, resulting in unregulated proteolytic activity that can reduce protein yield and function. To prevent these negative effects, protease and phosphatase inhibitors can be added to the lysis reagents. Numerous compounds have been identified and used to inactivate or block the activities of proteases and phosphatases by reversibly or irreversibly binding to them.

Thermo Scientific[™] Halt[™] and Thermo Scientific[™] Pierce[™] Protease and Phosphatase Inhibitor Cocktails and Tablets are broad-spectrum blends in both liquid (100X) and tablet formats for complete protein protection during extraction.

• Detergent solutions. Detergents are frequently used in cell lysis reagent formulation and other protein research methods. Thermo Scientific[™] Surfact-Amps[™] Detergent Solutions are highly purified, precisely diluted (10%) formulations that are ideal for applications or assays that are sensitive to contaminants that are present in unpurified detergents.

Protein clean-up

Many detergents and salts used in protein extraction formulations may have adverse effects on protein function or stability, or may interfere with downstream analysis; therefore, it may be necessary to remove or reduce these contaminants following cell lysis or subsequent sample processing, such as protein purification.

- Dialysis. Dialysis is a classic separation technique that facilitates the removal of small, unwanted compounds from proteins in solution by selective diffusion through a semipermeable membrane. Proteins that are larger than the membrane pores are retained on the sample side of the membrane, but low molecular weight contaminants diffuse freely through the membrane and can be removed over multiple buffer exchanges. Traditionally, flat dialysis tubing has been utilized, which requires preparation, and is slippery and cumbersome to handle. Thermo Scientific[™] Slide-A-Lyzer[™] dialysis cassettes and devices are ready to use and designed to eliminate potential sample leakage and maximize ease of use for specific applications.
- **Desalting.** Size-exclusion chromatography (also known as gel filtration) can be effectively utilized for protein desalting. A resin is selected with pores that are large

enough for small contaminants (e.g., salts) to penetrate, but too small for the protein of interest to enter. This causes the small contaminants to slow down their rate of migration as they get trapped in the resin, while the larger, faster proteins emerge from the column first, allowing the protein of interest to be recovered separately from the small molecules retained on the column. Thermo Scientific[™] Zeba[™] desalting products contain a unique resin and were specifically designed to provide consistent performance over a wide range of protein concentrations and sample sizes. High protein recovery can be achieved even for dilute protein samples.

• Concentration. Protein concentration and diafiltration. similar to dialysis, uses a semipermeable membrane to separate macromolecules from low molecular weight compounds. Unlike dialysis, which relies on passive diffusion, concentration is achieved by forcing both liquid (buffers) and low molecular weight solutes through the membrane by centrifugation, where they are collected on the other side (filtrate). Macromolecules remain on the sample side of the membrane, where they become concentrated to a smaller volume (retentate). For buffer exchange, the retentate is diluted to the original volume with exchange buffer and centrifuged multiple times until the desired level of exchange has been achieved. Our high-performance Thermo Scientific[™] Pierce[™] Protein Concentrators enable rapid sample processing with high protein recovery.

Protein purification

Various methods are used to enrich or purify a protein of interest from other proteins and components in a crude cell lysate or other sample. Ion exchange and affinity chromatography are two commonly used strategies for partial or 1-step purification.

• Ion exchange (IEX) chromatography. This purification method enables the separation of proteins based on the protein charge at a particular pH. Since multiple proteins may have similar charges, ion exchange chromatography generally enables only partial purification of a protein of interest when used early in a multistep purification process; however, IEX resins can also be used during a final polishing step to remove specific contaminants that persist after other purification steps. Typically, proteins bind to the column at low ionic strength and elute differentially by increasing salt concentration or

changing pH in a gradient. A cation exchange resin binds to positively charged proteins; an anion exchange resin binds to negatively charged proteins. Ion exchange resins are classified as "weak" or "strong", which refers to the extent that the ionization state of the functional groups varies with pH.

• Affinity chromatography. This purification method is enabled by the specific binding properties of a protein to an immobilized ligand. Because the protein of interest is tightly bound, contaminants can be removed through wash steps, and the bound protein can be stripped (eluted) from the support in a highly purified form. Affinity purification is desirable because it often produces higher protein yields and requires less steps than other purification methods. It is the method of choice for purifying recombinant or biotinylated proteins and antibodies.

Our high-performance resins are available with a range of ligand chemistries and in formats for purifying from microgram to kilogram quantities of protein.

Immunoprecipitation

Immunoprecipitation (IP) is the small-scale affinity purification of antigens using a specific antibody that is immobilized to a solid support such as magnetic beads or agarose resin. IP is one of the most widely used methods for isolation of proteins and other biomolecules from cell or tissue lysates for the purpose of subsequent detection by western blotting and other assay techniques. Other similar techniques used to study protein interactions include coimmunoprecipitation (co-IP), which is similar to IP except that the target antigen precipitated by the antibody is used to co-precipitate its binding partner(s) or associated protein complex from the lysate, and pull-downs, which are used when antibodies to specific proteins are not available. These "bait" proteins are tagged with an epitope to which a high-affinity antibody is available and ectopically expressed in the cell of interest.

Our IP products provide fast and reproducible sample processing with high protein yields and low nonspecific binding using antibody, biotin, or recombinant tag ligands, as well as activated surface beads for custom immobilization. Clean up

Extract

Protein extraction reagents and kits

Gentle formulations designed to maximize protein yield and activity

Obtain high protein yield from tissues, cells, or subcellular fractions using reagents and kits that are optimized for mammalian, bacterial, yeast, insect (baculovirus), and plant samples. These gentle formulations have been validated in multiple tissue types and cell lines, and generally eliminate the need for mechanical cell disruption. These extracts are compatible with a wide range of downstream applications, including protein assays, immunoprecipitation, protein purification, immunoassays, western blotting, EMSA, and enzyme assays.

Highlights:

- **Optimized**—formulations maximize protein yield and preserve protein activity
- Efficient—minimal cross-contamination between subcellular fractions
- **Compatible**—extracts can be used directly in most downstream applications
- **Gentle**—eliminates the need for mechanical cell disruption for most sample types

Parameter Parame

Table 1. Overview of sample types and Thermo Scientific[™] protein extraction reagents and kits.

	Sample type	Goal	Recommended Thermo Scientific reagents or kits			
	Primary or cultured mammalian cells or tissues	Total protein extraction	M-PER Reagent T-PER Reagent N-PER Reagent	RIPA Lysis and Extraction Buffer Pierce IP Lysis Buffer		
	Cultured mammalian cells or tissues	Subcellular fractionation or organelle isolation	NE-PER Reagent Subcellular Fractionation Kits Mitochondria Isolation Kits	Pierce Cell Surface Protein Isolation Kit Syn-PER Reagent Lysosome Enrichment Kit		
SN'S	Bacterial cells	Total protein extraction	B-PER Reagent			
SO	Yeast cells	Total protein extraction	Y-PER Reagent			
1	Insect cells (baculovirus)	Total protein extraction	I-PER Reagent			
	Plant tissue (leaf, stem, roots, flowers)	Total protein extraction	P-PER Reagent			

Comparison of cross-contamination between subcellular fractions

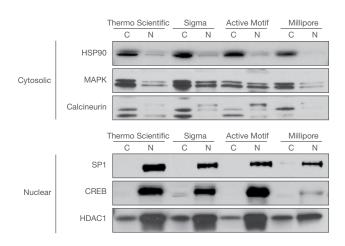
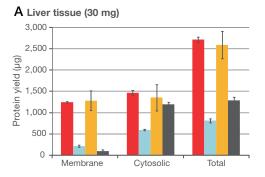



Figure 1. Nuclear and cytosolic fractions are obtained with minimal cross-contamination. HeLa cells were extracted with the Thermo Scientific[™] NE-PER[™] Nuclear and Cytoplasmic Extraction Reagents or with nuclear extraction kits from other vendors. Samples of the nuclear and cytosolic fractions were analyzed by western blot using antibodies against common nuclear, cytoplasmic, and membrane protein markers and visualized using Thermo Scientific[™] SuperSignal[™] West Pico Chemiluminescent Substrate (Cat. No. PI34080). Nuclear fractions produced with the NE-PER kit had minimal to no contamination with cytosolic or membrane proteins.

Comparison of protein yield

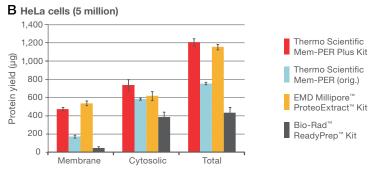
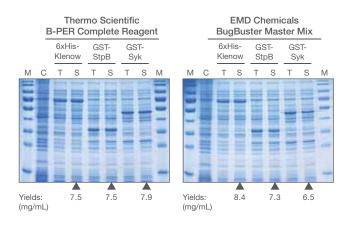



Figure 2. Improved protein yield using the Thermo Scientific[™] Mem-PER[™] Plus Membrane Protein Extraction Kit (Cat. No. Pl89842). Membrane proteins were isolated from mouse liver tissue and HeLa cells using four commercial extraction kits. Protein yields (micrograms) for membrane, cytosolic, and total fractions were determined with the Thermo Scientific[™] Pierce[™] BCA Protein Assay Kit (Cat. No. Pl23225).

Figure 3. Protein yield comparison of two bacterial cell lysis

reagents. *E. coli* ER2566/pLATE51-Klenow, ER2566/pGST-CC-StpB, and ER2566/pGS-Syk cell pellets (0.5 g), were resuspended in 2.5 mL aliquots of Thermo Scientific[™] B-PER[™] Complete Bacterial Protein Extraction Reagent (Cat. No. PI89821) or EMD Chemicals BugBuster[™] Master Mix with gentle vortexing for 15 minutes at room temperature. Insoluble cell debris was removed by centrifugation at 16,000 x g for 20 minutes at 4°C. Protein yields (concentrations) for soluble fractions were determined using the Pierce BCA Protein Assay Kit.

For more information or to view additional products, go to **thermofisher.com/proteinextraction**

Protease and phosphatase inhibitors

Broad-spectrum liquid cocktails and tablets for complete protein protection

Clean up

Extrac

Protease and phosphatase inhibitor cocktails and tablets are ideal for the protection of proteins during extraction or lysate preparation from primary cells, cultured mammalian cells, animal tissues, plant tissues, yeast cells, or bacterial cells. Formulations are packaged in multiple sizes, and EDTA-free versions are available for divalent cation– sensitive assays. The Pierce inhibitor tablets have been reformulated to dissolve quickly into a clear solution, and are fully compatible with all Pierce protein assays.

Highlights:

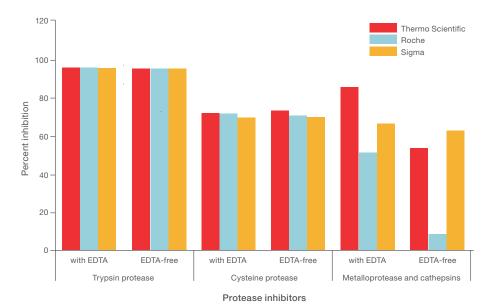

- Convenient—ready-to-use, fully disclosed, broadspectrum formulations available as either liquid cocktails or tablets in multiple pack sizes and with a minimum of one-year shelf life
- **Complete protection**—combined cocktail available with all-in-one formulations containing both protease and phosphatase inhibitors
- Compatible—use directly with Thermo Scientific[™] Pierce[™] Cell Lysis Buffers or other commercial or homemade detergent-based lysis reagents

Table 2. Components present in Halt Inhibitor Cocktails and Pierce Protease and Phosphatase Inhibitor Tablets.

Inhibitor component	Target (mechanism)	Protease liquid cocktails and tablets	Phosphatase liquid cocktails and tablets	Combined protease and phosphatase liquid cocktails and tablets
AEBSF•HCI	Serine proteases (irreversible)	•		
Aprotinin	Serine proteases (reversible)	•		•
Bestatin	Aminopeptidases (reversible)	•		•
E-64	Cysteine (irreversible)	•		•
Leupeptin	Serine and cysteine proteases (revers- ible)	٠		٠
Pepstatin	Aspartic acid proteases (reversible)	•		
EDTA*	Metalloproteases (reversible)	•		•
Sodium fluoride	Serine/threonine and acidic phosphatases		٠	٠
Sodium orthovanadate	Tyrosine and alkaline phosphatases		•	•
β -glycero-phosphate	Serine/threonine phosphatases		•	•
Sodium pyrophosphate	Serine/threonine phosphatases		•	•

* EDTA not in EDTA-free formulations.

Comparison of protease or phosphatase inhibition

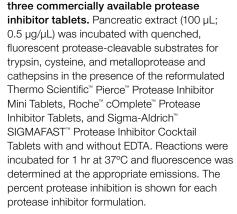
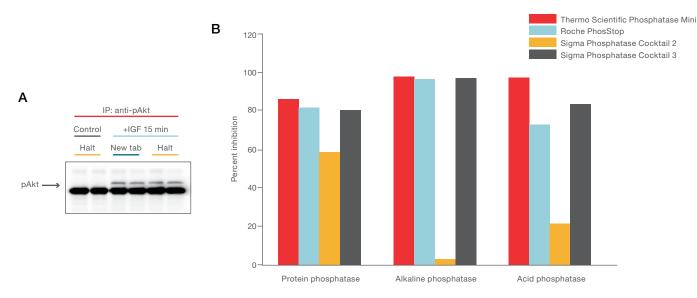



Figure 4. Performance comparison between

Figure 5. Protein phosphorylation is preserved in cell extracts. Relative levels of total and phosphorylated protein from extracts prepared in the absence or presence of phosphatase inhibitors were determined by western blot analysis. **(A)** HCT116 cells were serum-starved and treated with either IGF for 15 min or left as control cells. Cell lysates were prepared in IP Lysis Buffer and the reformulated Thermo Scientific[®] protease and phosphatase combined inhibitors (EDTA-free). 500 µg of lysate was incubated with 5 µg of phospho-AKT antibody overnight at 4°C. The complex was then incubated with Thermo Scientific[®] Pierce Protein A/G Magnetic beads for 1 hr at RT. Beads were washed and low-pH elution was performed. **(B)** The degree of inhibition for protein, alkaline, and acid phosphatase activity was determined in kidney extract (25 µL; 0.5 µg/µL) by incubating extracts with a fluorogenic substrate (MFP or FDP) that measures phosphatase activity upon dephosphorylation in the presence of Pierce Phosphatase Inhibitor Mini Tablets, Roche[®] PhosStop[®] Phosphatase Inhibitor Tablets, and Sigma-Aldrich[®] Phosphatase Inhibitor Scientific and 3 liquid formulations. Reactions were incubated for 1 hour at 37°C and fluorescence was determined at the appropriate emissions. The percent phosphatase inhibition is shown for each phosphatase inhibitor formulation.

For more information or to view additional products, go to **thermofisher.com/inhibitorcocktails**

Detergents

Extract

Clean up

Easy-to-pipette, highly purified Surfact-Amps 10% solutions

Purify

Surfact-Amps Detergent Solutions are easy-to-use 10% (w/v) solutions of highly purified detergents that can be used in routine and high-demand protein research methods and molecular biology techniques. These formulations provide high purity, quality, and stability. Unlike neat detergents, which are extremely viscous, Surfact-Amps 10% solutions are easy to pipette and accurately dispense. The surfactant solutions are carefully prepared and packaged under nitrogen in glass ampules or nonleaching HDPE bottles, helping to ensure their stability and minimizing the accumulation of peroxides and degradation products.

Highlights:

- Accurate—precise 10% detergent solution in ultrapure water
- Easy to use-solution is simple to dispense and dilute
- Exceptionally pure-less than 1.0 µeq/mL peroxides and carbonyls
- **Stable**—packaged under inert nitrogen gas in glass ampules or HDPE bottles

Table 3. Properties of common detergents.

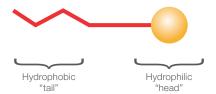


Figure 6. Generic structure of a detergent molecule.

Detergent	Description	Aggregation number	Micelle MW	MW	Critical micelle concentration (CMC, mM)	CMC w/v (%)	Cloud point (°C)	Dialyzable
Triton X-100	Nonionic	140	90,000	647	0.24	0.0155	64	No
Triton X-114	Nonionic	_	—	537	0.21	0.0113	23	No
NP-40	Nonionic	149	90,000	617	0.29	0.0179	80	No
Brij-35	Nonionic	40	49,000	1,225	0.09	0.1103	>100	No
Brij-58	Nonionic	70	82,000	1,120	0.077	0.0086	>100	No
Tween-20	Nonionic	_	_	1,228	0.06	0.0074	95	No
Tween-80	Nonionic	60	76,000	1,310	0.012	0.0016	_	No
Octyl glucoside	Nonionic	27	8,000	292	23–25	0.6716-0.7300	>100	Yes
Octylthio glucoside	Nonionic	_	-	308	9	0.2772	>100	Yes
SDS	Anionic	62	18,000	288	6–8	0.1728-0.2304	>100	Yes
CHAPS	Zwitterionic	10	6,149	615	8–10	0.4920-0.6150	>100	Yes

Table 4. Purity comparison of Tween-20 detergents.*

Manufacturer/ brand	Peroxide concentration (µeq/mL)	Carbonyl concentration (µeq/mL)
Thermo Scientific	≤0.01	≤0.32
Amresco	0.598	0.399
Anatrace	≤0.01	≤0.32
G-Bioscience	0.718	≤0.32
Millipore EMD	0.037	≤0.32
Roche	0.279	0.445

Table 6. Purity comparison of Triton X-100 detergents.*

Manufacturer/ brand	Peroxide concentration (µeq/mL)	Carbonyl concentration (µeq/mL)
Thermo Scientific	≤0.20	≤0.20
Amresco	≤0.20	≤0.20
Anatrace	≤0.20	0.333
G-Bioscience	≤0.20	≤0.20
Millipore EMD	≤0.20	≤0.20
Roche	≤0.20	0.253
Sigma	≤0.20	0.355

Table 5. Purity comparison of NP-40 detergents.*

Manufacturer/ brand	Peroxide concentration (µeq/mL)	Carbonyl concentration (µeq/mL)
Thermo Scientific	≤0.035	≤0.01
Amresco	0.083	0.374
Anatrace	0.053	4.246
G-Bioscience	≤0.035	≤0.01
Millipore EMD	≤0.035	0.042
Roche	0.056	0.021

Table 7. Purity comparison of Brij-35 detergents.*

Manufacturer/ brand	Peroxide concentration (µeq/mL)	Carbonyl concentration (µeq/mL)
Thermo Scientific	<0.035	<0.62
Amresco	1.075	3.742
Anatrace	<0.035	<0.62
G-Bioscience	<0.035	<0.62
Millipore EMD	<0.035	<0.62

* Oxidant levels were measured using Thermo Scientific" Pierce" Quantitative Peroxide Kit (Cat. No. 23385) and carbonyl levels were measured using the Brady test for carbonyls.

For more information or to view additional products, go to **thermofisher.com/detergents**

Thermo Scientific[™] benchtop centrifuges deliver efficient sample processing in cell culture applications, spin column and microplate processing, and a variety of separation needs. In addition, the capacity and ergonomic features of our centrifuges are an exceptional value for everyday sample preparation.

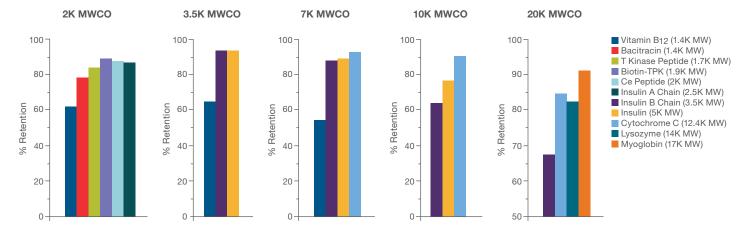
Learn more at thermofisher.com/benchtopcentrifuges

Download our Cell and Protein Isolation Technical Handbook. Learn how to optimize protein extraction from cells and tissues for better yield and improved downstream compatibility using our protein extraction and subcellular fractionation reagents and protease and phosphatase inhibitor cocktails and tablets. Improve your protein biology methods with our highly purified and precisely diluted detergent solutions.

thermofisher.com/proteinextractionhandbook

Slide-A-Lyzer dialysis products

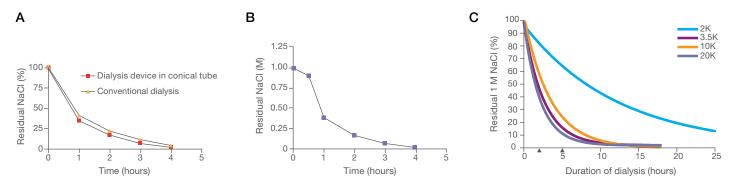
Easy-to-handle devices, cassettes, and flasks for secure sample processing


Thermo Scientific[™] dialysis units help facilitate the rapid and trouble-free dialysis of sample volumes from 10 µL to 250 mL. Unlike standard flat tubing, these innovative devices do not require knots or clips that can lead to leaking and sample loss. Thermo Scientific[™] Pierce[™] 96-well Microdialysis Plates and Slide-A-Lyzer[™] MINI Dialysis Devices are ideal for small volumes, Slide-A-Lyzer[™] Dialysis Cassettes (original and G2) are recommended for small to medium volumes, and Slide-A-Lyzer[™] Dialysis Flasks are recommended for larger volumes.

Highlights:

- Excellent sample recoveries—low-binding plastic and membranes help minimize sample loss compared to filtration and resin systems
- **Convenient**—easy-to-grip format helps simplify sample addition and removal with syringe and/or pipette
- **Secure**—sealed membranes help prevent leakage that can occur with dialysis tubing and homemade devices
- Validated—each device is leak-tested during production

MWCO membrane	10–100 μL Pierce 96-well Microdialysis Plate	10–2,000 μL Slide-A-Lyzer MINI Dialysis Device	0.1–70 mL Slide-A-Lyzer G2 Dialysis Cassette	0.1–30 mL Slide-A-Lyzer Dialysis Cassette	150–250 mL Slide-A-Lyzer Dialysis Flask	15–100 mL SnakeSkin Dialysis Tubing
	The second se				Ó	
2K	NA	\checkmark	1	1	1	NA
3.5K	\checkmark	\checkmark	1	1	1	\checkmark
7K	NA	\checkmark	1	1	NA	\checkmark
10K	1	1	1	1	1	1
20K	NA	Х	Х	Х	Х	NA


Table 8. Thermo Scientific[™] high-performance dialysis product selection guide.

Protein recovery by molecular weight cutoff (MWCO)

Figure 7. Sample retention by the 2K, 3.5K, 7K, 10K, and 20K MWCO Thermo Scientific^{**} Slide-A-Lyzer^{**} Cassette membrane. Individual proteins or vitamin B_{12} (1 mg/mL) in either saline or 0.2 M carbonate bicarbonate buffer, pH 9.4 were dialyzed overnight (17 hours) at 4°C. The amount of retentate was estimated using either the Pierce BCA Protein Assay Kit or absorption at 360 nm (for vitamin B_{12}).

Dialysis rates for various formats

Figure 8. The rate of removal of NaCl using various dialysis products. NaCl removal from samples was determined by measuring the conductivity of the retentate at the indicated times. **(A)** Slide-A-Lyzer MINI Dialysis Device (10K MWCO, 2 mL) versus conventional dialysis. Bovine serum albumin (BSA) samples (2 mL, 0.25 mg/mL in 1 M NaCl) were dialyzed against 45 mL of water in 50 mL disposable conical tubes on an orbital shaker (300 rpm) at room temperature. The water was changed once after 2 hours. Results are the average of two samples. For conventional dialysis, the samples were dialyzed against 2 L of water in a beaker with stirring. Greater than 95% of NaCl was removed within 4 hours. **(B)** Samples of 0.1 mL (0.4 mg/mL cytochrome C containing 1 M NaCl) were dialyzed in the Pierce 96-well Microdialysis Plate against 1.8 mL of water at RT with gentle shaking. The buffer was changed at 1-, 2-, and 3-hour intervals over a 4-hour period. Removal of NaCl was >83% after 2 hours and >99% after 4 hours. **(C)** Proteins in 200 mL samples containing 1 M NaCl were dialyzed at room temperature using Slide-A-Lyzer Dialysis Flasks with 2K, 3.5K, 10K, and 20K MWCOs. The dialysis buffer (4 L) was changed after 2 and 5 hours (triangles; also at 41 hours for the 2K condition). Greater than 95% of NaCl was removed within 8 to 18 hours (41 hours for the 2K condition).

For more information or to view additional products, go to **thermofisher.com/dialysis**

Zeba desalting products

Convenient spin column and plate formats help ensure rapid desalting with high protein recovery

Thermo Scientific[™] Zeba[™] desalting products contain proprietary high-performance resins with exceptional desalting and protein-recovery characteristics. They can help process even very dilute protein samples, with high levels of protein recovery and greater than 95% retention (removal) of salts and other small molecules. The resin is provided in convenient spin columns, plates, and cartridges, for processing sample volumes between 2 µL and 4 mL.

Highlights:

Extract

- **High performance**—proprietary resin enables excellent protein recovery and efficient contaminant removal
- **Flexible**—available in spin columns, filter spin plates, and cartridges for a range of needs
- Fast—no fraction screening or waiting for protein to emerge by gravity flow
- **Economical**—cost-effective products that offer great performance

Format	Micro spin column	0.5 mL spin column	2 mL spin column	5 mL spin column	10 mL spin column	96-well spin plate	1 mL chroma- tography column	5 mL chroma- tography column
					T	Anternation		
Resin bed	75 µL	0.5 mL	2 mL	5 mL	10 mL	550 µL	1 mL	5 mL
Sample volume (7K MWCO)	2–12 μL	30–130 µL	200–700 µL	500–2,000 μL	700–4,000 µL	20–100 µL	50–250 µL	100–1,500 µL
Sample volume (40K MWCO)	5–14 µL	70–200 µL	200–900 µL	300–2,000 μL	1,000–4,000 µL	20–100 µL	NA	NA

Table 9. Zeba desalting products selection guide by format and recommended sample volume.

	7K MWCO		40K I	имсо
Size	Recovery	Removal	Recovery	Removal
Peptide/protein <7 kDa	NR		NR	
Protein 7–13 kDa	++		++	
Protein 14–20 kDa	+++		+++	
Protein 20–150 kDa	+++		+++	
Molecule <500 Da		+++		+++
Molecule 600-1,200 Da		++		+++
Molecule 1,200–1,500 Da		+		++
Molecule >1,500-2,000 Da		NR		+

Table 10. Zeba resin selection guide by protein recovery and small molecule removal.

Table 11. Comparison of recommended sample volume capacity of common spin desalting products.

	0 mL	0.01 mL	0.1 mL	0.5 mL	. 1 mL	2 mL	3 mL	4 mL
Thermo Scientific	Zeba N Spin Co		mL Zeba n Column 2 m	L Zeba Spin Colu	umn	10 mL 2	Zeba Spin Column	
Zeba spin desalting product	S				5 mL Zeba Spin Co	blumn		
GE Healthcare products			PD SpinTrap G-25 Column	2D MiniTrap	PD MiniTrap	PD-10		
		Micro Bio 6 Colur	-Spin	-25 Column	G-25 Column	Desalting Columr	IS	
Bio-Rad products			Bio-Spin 6 Column					

Comparison of protein recovery and sample dilution

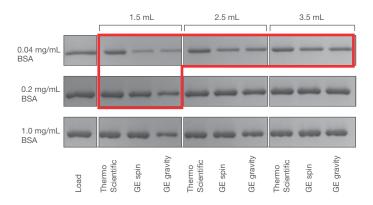


Figure 9. Zeba Spin Desalting Columns provide a high protein recovery while providing minimal sample dilution over a wider range of sample concentrations and volumes compared to alternative products. Zeba Spin Desalting Columns, 10 mL (7K MWCO) (Cat. No. Pl89893) and GE PD-10 Columns were used to desalt 1.5, 2.5, and 3.5 mL BSA samples at a concentration of 0.04, 0.2, and 1 mg/mL. Desalting was performed according to the manufacturers' recommended protocols; both the spin and gravity protocols were used for the GE PD-10. Protein recovery was analyzed by SDS-PAGE. For each electrophoresis gel, an aliquot of starting sample equal to 1 µg of BSA was loaded in lane 1 as the loading control; all other desalted samples were loaded in the gel at the same volume as the loading control. Differences in intensity between lanes are a combination of protein recovery and sample dilution caused by desalting. The largest differences in recovery and concentration were noticed in the highlighted area.

For more information or to view additional products, go to **thermofisher.com/desalting**

Extract

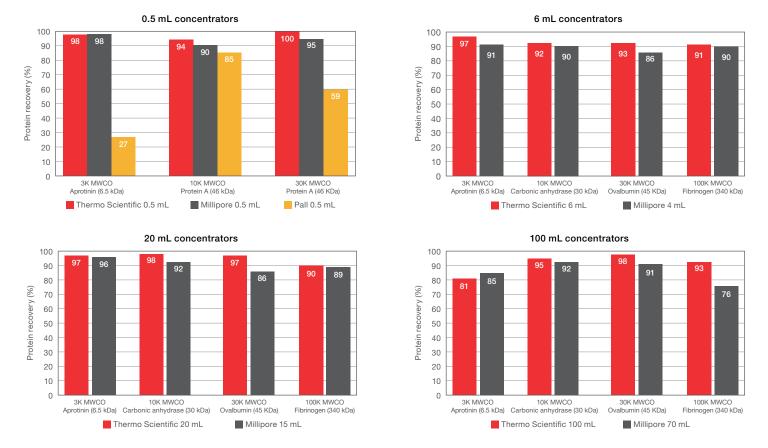
Protein concentrators

Easy-to-use devices for rapid and efficient concentration

Thermo Scientific[™] Pierce[™] concentrators are easy-touse centrifugal devices that provide fast processing and excellent recovery of protein samples. These disposable ultrafiltration devices contain a polyethersulfone (PES) membrane in five distinct molecular weight cutoffs (MWCOs) for the concentration, desalting, and buffer exchange of biological samples, such as tissue culture media, antisera, monoclonal antibody preparations, and chromatography fractions. They can also be used to remove unincorporated label following protein modification or crosslinking reactions.

Highlights:

- Rapid processing—unique design minimizes membrane fouling, and sample concentration of 10- to 30-fold can be achieved in 5–30 minutes for 10K MWCO (devicedependent times may vary for other MWCOs), even with particle-laden solutions
- **High recovery**—retain >90% of protein samples while removing contaminants or exchanging buffers



- **Convenient**—clear markings, wide sample chamber, and removable filtrate chamber make handling simple and easy
- Instrument compatible—can be used with standard centrifuges utilizing either fixed-angle or swinging-bucket rotors

Volume range	0.1–0.5 mL	2–6 mL	5–20 mL	20–100 mL
		THE CONTRACT		
MWCOs available	3K, 10K, 30K, 100K	3K, 10K, 30K, 100K	3K, 10K, 30K, 100K	5K, 10K, 30K, 100K
Processing time*	3–15 min	15–90 min	15–60 min	15–90 min
Retentate volume range*	9–67 µL	51–174 µL	121–777 μL	1.9–3.5 mL
Protein recovery range*	95–100%	94–100%	94–100%	92–98%

Table 12. Pierce Protein Concentrators selection guide.

* Four different protein solutions were used for each molecular weight cutoff (MWCO).

Protein recovery compared to other suppliers

Figure 10. Comparison of protein recovery between Pierce Concentrators (using 3K, 5K, 10K, 30K, or 100K MWCO) and other vendors for 0.5 mL, 6 mL, 20 mL, and 100 mL concentrators. Samples of different protein solutions were centrifuged in Pierce Protein Concentrators and other suppliers' concentrators according to manufacturers' instructions: 0.5 mL (15,000 x g), 6 mL (4,000 x g), 20 mL (4,700 x g), and 100 mL (1,200 x g). Samples were centrifuged until a greater than 15- to 30-fold decrease in sample volume was achieved; protein concentration was measured by either Pierce BCA Protein Assay Kit (0.5 mL concentrators only) or absorbance at A_{280} .

For more information or to view additional products, go to **thermofisher.com/concentrators**

Learn how to effectively remove contaminants, buffer exchange, or concentrate protein samples from 2 µL to 250 mL using various Thermo Scientific[™] protein biology tools in this 48-page handbook. Dialyze protein samples securely using Slide-A-Lyzer cassettes and devices. Rapidly desalt samples with high protein recovery using Zeba desalting spin columns and plates. Efficiently extract specific contaminants using resins optimized for detergent or endotoxin removal. Concentrate dilute protein samples quickly using Pierce Protein Concentrators.

thermofisher.com/proteincleanuphandbook

Protein purification products

Purify

High-performance resins and magnetic beads for maximum protein yield

The Thermo Scientific[™] protein purification portfolio offers a broad range of products for the ion exchange and affinity-based isolation of proteins and antibodies from µg to kg quantities. Strong anion or cation exchange resins provide an intermediate level of purification during multistep isolation or act as a polishing step during the final stages of purification. Biotinylated or recombinant proteins can be conveniently captured using avidin or affinity tag-based binding supports. Customized protein purification can be achieved by immobilizing ligands to the appropriate activated support. Accessory products are available for increased convenience, including disposable columns and binding and elution buffers. Rapid protein screening or immunoprecipitation (IP), co-IP, and pull-down applications can be completed utilizing magnetic bead-based resins and kits, as described on pages 20-23.

Highlights:

 Broad product selection—strong ion exchange and affinity supports for the purification and enrichment of proteins and antibodies; affinity ligands enable 1-step purification of recombinant and biotinylated proteins, while activated supports provide a platform for custom protein immobilization

Ministry Min

- **High performance**—resins are designed to maximize protein yield and reduce background
- More formats—magnetic beads, loose resin, FPLC cartridges, and 96-well filter plates enable protein purification from screening and small-scale phases to process-scale purification
- Economical—pricing that is similar to or better than other leading suppliers

Application	Purity level	Ligand/chemistry Base bead type		Packaging options
lon exchange purification	Medium to high (application specific)	Strong anion exchange Strong cation exchange	- POROS	Loose resin
Antibody		Protein A, protein G, protein A/G	Agarose, magnetic beads, magnetic agarose, POROS	Loose resins or beads, — spin columns and kits.
purification	High	Protein L	Agarose, magnetic beads	chromatography cartridges,
		Melon Gel	Agarose	96-well spin plates
Fusion protein purification	ion protein High Ni-NTA, cobalt, glutathione r		Agarose, Superflow, magnetic beads, magnetic agarose	Loose resins or beads, spin columns and kits, chromatography cartridges, 96-well spin plates
		Anti-c-Myc, anti-HA	Agarose, magnetic beads	Loose resin or beads, kits
Biotin affinity purification	High	Avidin, streptavidin, NeutrAvidin, monomeric avidin		
Protein	High Carboxyl reactive		Agarose	Loose resin or dry powder
immobilization		Epoxy, tosylactivated, carboxylic acid, amine	Magnetic bead	Loose beads

Table 13. Overview of ion exchange, affinity, and activated supports.

Scale	High-throughput screening	High-throughput batch	Batch	Pilot	Process
Description	Small scale, automation compatible	Lab or bench scale	Lab or bench scale	Scale-up desired	Production scale
Yield	Microgram	Milligram	Milligram	Gram	Kilogram
Format	Magnetic particle processor	Magnetic particle processor, 96-well spin plate (agarose)	Gravity flow, spin column (agarose), fast protein liquid chromatography (FPLC) at low flow rates	FPLC at medium flow rates	FPLC at high flow rates
Application	High-throughput screening, interaction studies (IP, co-IP, pull- down), mutational analysis	High-throughput screening requiring mg scale	Functional assays, structural analysis	Structural analysis, intermediate-scale production	Bulk production
	C Magnetic bead (1–2.8 μm)				
		C Magnetic agarose (10–40 μm)			
Recommended resin type		Agarose (45–165 µm)		
resin type			Superflow (45-	-165 µm)	
			POROS resin (50) µm)	

Table 14. Select your resin based on purification scale and application.

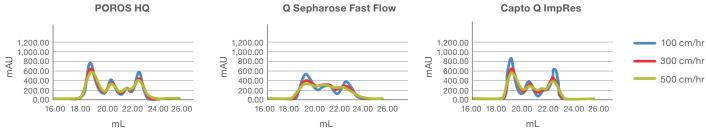
Ion exchange chromatography resins and membranes

We offer strong cation exchange (SCX) and strong anion exchange (SAX) resins, composed of a rigid polymeric bead with covalent surface chemistries, for easier handling and packing, and superior physical and chemical stability, resulting from a robust manufacturing process.

These resins are designed to deliver excellent separation and scale-up capabilities.

Thermo Scientific[™] Pierce[™] Strong Cation or Anion Exchange Spin Columns are membrane-based spin formats that eliminate the need for column packing, allow multiple samples to be processed simultaneously, and are ideal for working with low-volume buffer solutions.

Table 15. Strong ion exchange purification selection guide.

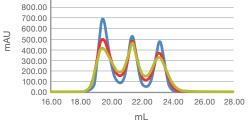

Chemistry	Salt tolerance	Recommended product	High- throughput screening	High- throughput batch	Batch	Pilot	Process
Strong anion	≤25 mM	Pierce Strong Anion Exchange Spin Columns	\checkmark	\checkmark			
exchange	150 mM	POROS HQ resin			\checkmark	1	\checkmark
	≤50 mM	POROS XQ resin			\checkmark	\checkmark	\checkmark
Strong cation exchange	≤25 mM	Pierce Strong Cation Exchange Spin Columns	\checkmark	\checkmark			
	≤150 mM	POROS XS resin			\checkmark	1	1

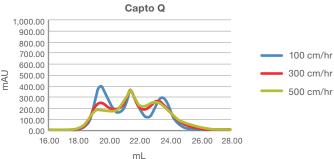
Immunoprecipitate

Strong anion exchange (SAX) resins and spin columns

Thermo Scientific[™] POROS[™] HQ resin is a strong anion exchange resin that is based on a quaternized polyethyleneimine functional group yielding a high capacity, Perfusion Chromatography[™] media designed for the separation and purification of biomolecules. The Pierce Strong Anion Exchange Spin columns are membrane-based centrifugal devices ideal for processing samples of 0.5 mL to 20 mL volumes.

Comparison of resolution at different flow rates

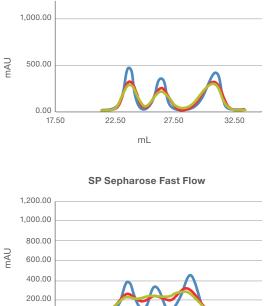

Figure 11. Comparison of resolution vs. flow rate between POROS HQ and other resins. Three columns (0.5 cm ID x 5 cm) packed with 1 mL of either of POROS HQ, GE Healthcare Capto Q ImpRes, or GE Healthcare Q Sepharose[™] Fast Flow resin were loaded with a protein mixture of chicken ovalburnin, human holo-transferrin, and soybean trypsin inhibitor (3.0 mg of each protein). A gradient was applied from 0 to 1 M NaCl at a flow rate of 100 cm/hr over 20 column volumes. Purification was then repeated using elution flow rates of 300 and 500 cm/hr.

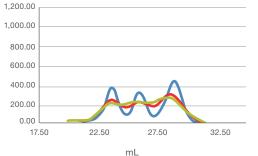

The Thermo Scientific[™] POROS[™] XQ resin is a nextgeneration, high-capacity, high-resolution, salt-tolerant strong anion exchange resin. It enables >140 mg/mL of dynamic binding capacity in the presence of up to 150 mM NaCl, while delivering exceptional separation performance.

Comparison of resolution at different flow rates

The high dynamic binding capacity enables reduced column size, a smaller footprint, decreased water and buffer usage, and reduced cycling. The low operating back pressure and linear pressure versus flow responses drive flexible scalability.

POROS XQ 1,000.00 900.00 800.00 800.00

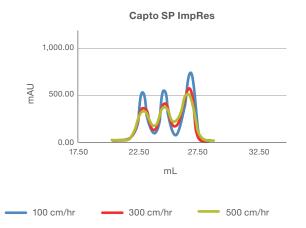



Figure 12. Comparison of resolution vs. flow rate between POROS XQ and GE Healthcare Capto Q resins. Three columns (0.5 cm ID x 5 cm) packed with 1 mL of either of POROS XQ or Capto Q SAX resin were loaded with a protein mixture of chicken ovalbumin, human holo-transferrin, and soybean trypsin inhibitor (3.0 mg of each protein). A gradient was applied from 0 to 1 M NaCl at a flow rate of 100 cm/hr over 20 column volumes. Purification was then repeated using elution flow rates of 300 and 500 cm/hr.

Strong cation exchange (SCX) resin

Thermo Scientific[™] POROS[™] XS Resin is the first highcapacity, high-resolution strong cation exchange resin that allows loading to more than 100 mg/mL capacity in the presence of up to 150 mM NaCl, while delivering superior separation capability.

Comparison of resolution at different flow rates POROS XS



Affinity chromatography resins

Our broad menu of resins and formats enable single-step purification of biotinylated or recombinant proteins and antibodies. In addition, customized purification solutions can be designed by the covalent attachment of a ligand to one of our activated supports. Accessory products for all aspects of purification, including disposable columns and binding and elution buffers, are also available.

The Pierce Strong Cation Exchange Spin columns are membrane-based centrifugal devices ideal for processing samples of 0.5 mL to 20 mL volumes.

Figure 13. Comparison of resolution vs. flow rate between POROS

XS and other SCX resins. Three columns (0.5 cm ID x 5 cm) packed with 1 mL of either POROS XS, GE Healthcare Capto SP ImpRes, or GE Healthcare SP Sepharose Fast Flow resin were loaded with a protein mixture of chymotrypsinogen, cytochrome C, and lysozyme (1.5 mg of each protein). A gradient was applied from 0 to 1 M NaCl at a flow rate of 100 cm/hr over 30 column volumes. Purification was then repeated using elution flow rates of 300 and 500 cm/hr.

Antibody purification

Proteins A, G, A/G, and L have unique properties, which make each one suitable for different types of antibody targets (e.g., antibody subclass or animal species). These ligands result in the purification of general immunoglobulins from a crude sample. Depending on the sample source, antigen-specific antibody may account for only a small portion of the total immunoglobulin in the sample. For example, generally only 2-5% of total IgG in mouse serum is specific for the antigen used to immunize the animal.

Table 16. Antibody purification selection guide.

Mode	Description	Recommended product	High- throughput screening	High- throughput batch	Batch	Pilot	Process
Negative selection	Removal of all non- immunoglobulin proteins	Melon gel			1		
		Dynabeads Protein A Magnetic Beads	\checkmark				
		Protein A Plus Agarose			\checkmark		
		POROS MabCapture A Select			 Image: A second s	 Image: A second s	\checkmark
		Dynabeads Protein G Magnetic Beads	✓				
	Immobilized	Protein G Plus Agarose			<i>√</i>		
lgG	immunoglobulin-binding	POROS MabCapture G Select			1	1	1
enrichment	proteins to selectively remove IgG from a serum sample	Pierce Protein A/G Magnetic Beads	✓				
		Protein A/G Magnetic Agarose		\checkmark			
		Protein A/G Plus Agarose			1		
		POROS MabCapture A/G Select			\checkmark	1	1
		Pierce Protein L Magnetic beads	 Image: A second s				
		Protein L Agarose			1		
lgG enrichment	Thiophilic adsorption	Pierce Thiophilic Adsorbent			1		
lgM enrichment	Immobilized mannan binding protein (MBP)	Pierce Mannan Binding Protein Agarose			1		
lgA enrichment	Immobilized jacalin, a D-galactose binding lectin	Pierce Jacalin Agarose			1		

Comparison of protein yield between suppliers

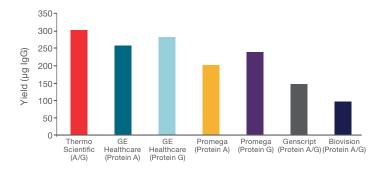
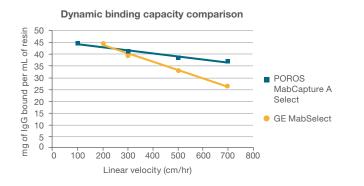
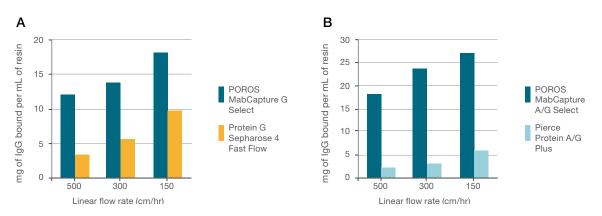




Figure 14. Thermo Scientific[™] Pierce[™] Protein A/G Magnetic Agarose Beads provide higher purification yields than other commercially available magnetic beads. IgG purification was performed with the Pierce Protein A/G Magnetic Agarose Beads, GE Healthcare[™] A Mag Sepharose Xtra beads, GE Healthcare Protein G Mag Sepharose Xtra beads, Promega[™] Magne[™] Protein A beads, Promega Magne[™] Protein G beads, GenScript[™] Protein A/G MagBeads, BioVision[™] Protein A/G Magnetic Beads, and Pierce Protein A/G Magnetic Beads. Mouse and human sera (50 µL) were diluted with binding buffer according to the manufacturers' protocols and added to magnetic agarose beads. IgG was purified following the manufacturers' protocols. IgG yield was estimated by absorbance of IgG at 280 nm. All purifications were done in duplicate.

Comparison of dynamic binding capacity at different flow rates

Figure 15. Comparison of dynamic binding capacity vs. flow rate. Two columns (0.46 cm ID x 20 cm) were packed with 1 mL of either Thermo Scientific[®] POROS[®] MabCapture[®] A Select or GE Healthcare MabSelect[®] resin and were challenged with human IgG (5 mg/mL) at flow rates of 700, 500, 300, 200, or 100 cm/hr. The dynamic binding capacity (total protein loaded) was determined at 5% breakthrough.

Figure 16. Comparison of dynamic binding capacity vs. flow rate. Each column (0.5 cm ID x 5 cm) was packed with 1 mL of resin and was challenged with human IgG (1 mg/mL) at flow rates of 500, 300, or 100 cm/hr (corresponding to residence times of 0.3, 1, and 2 min, respectively). The dynamic binding capacity (total protein loaded) was determined at 10% breakthrough. (A) Comparison between Thermo Scientific[™] POROS[™] MabCapture[™] A/G Select and Pierce Protein A/G Plus resins.

Recombinant protein purification

We offer a variety of Thermo Scientific^M purification resins for the purification of recombinant proteins from cultures such as *E. coli* or *Picchia*. These resins are available in multiple formats to accommodate a variety of needs, from high-throughput screening to batch and pilot-scale purification. Superflow resins have undergone extensive chemical characterization. We have ligands targeting a variety of fusion tags, including 6xHis, GST, c-Myc, and HA.

Table 17. Recombinant protein purification selection guide.

Тад	Ligand	Features	Recommended product	High- throughput screening	High- throughput batch	Batch	Pilot	Process
			HisPur Ni-NTA Magnetic Beads	1				
	Ni-NTA	Higher protein	Pierce Ni-NTA Magnetic Agarose Beads		1			
		yield	HisPur Ni-NTA Agarose Resin			1		
6xHis			HisPur Ni-NTA Superflow Resin				1	
	Hial	Higher protein purity	Dynabeads His-Tag Isolation Magnetic Beads	1				
	Cobalt		HisPur Cobalt Agarose Resin			1		
			HisPur Cobalt Superflow Resin				\checkmark	
		Solubility and	Pierce Glutathione Magnetic Agarose Beads		1			
GST	Glutathione	purification tag	Pierce Glutathione Agarose	1		\checkmark		
			Pierce Glutathione Superflow				\checkmark	
HA	Anti-HA	Immobilized	Pierce Anti-HA Magnetic Beads	1				
ΠA		antibody	Pierce Anti-HA Agarose			1		
c-Myc	Anti-c-Myc	Immobilized	Pierce Anti-c-Myc Magnetic Beads	1				
C-IVIYC /	Anti-C-iviyC	antibody	Pierce Anti-c-Myc Agarose			\checkmark		

Comparison of protein yield between suppliers

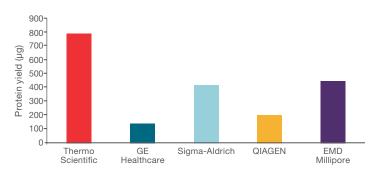


Figure 17. Comparison of protein yield between Pierce Ni-NTA Magnetic Agarose and competing products from other suppliers. Samples (0.5 mL) of 6xHis-tagged BirA protein were diluted with 0.5 mL binding buffer and purified manually with 25 mL settled beads. Respective suppliers' protocols were followed for their buffer compositions and volumes. Pierce Ni-NTA Magnetic Agarose had the highest yield compared to beads from the other suppliers. 350 300-250-150-100-50-0 Thermo Promega Sigma-Aldrich Jena Bioscience

Figure 18. Comparison of protein yield between Pierce Glutathione Magnetic Agarose and products from other suppliers. Samples (0.25 mL) of GST-RalGDS, were diluted with 0.25 mL binding buffer and purified manually with 25 µL settled beads. Respective suppliers' protocols were followed for their buffer compositions and volumes. Pierce Magnetic Agarose had the highest yield compared to beads from the other suppliers.

Comparison of protein purity and yield and resin reusability

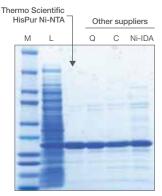
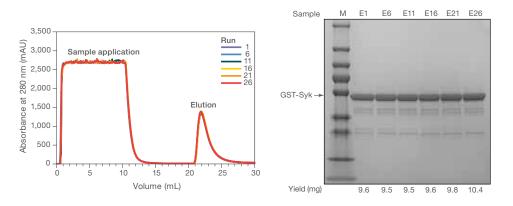



Figure 19. Thermo Scientific[™] HisPur[™] Ni-NTA Resin (agarose) performs as well as or better than other suppliers' nickel resins. Bacterial lysate (12 mg total protein) containing overexpressed 6xHis-GFP (green fluorescent protein) was applied to HisPur Ni-NTA Resin (Cat. No. PI88221) (0.2 mL) and purified by the batch-bind method. The same amount of total protein was applied to Supplier Q (Qiagen), Supplier C (Clontech), and Ni-IDA resins per the manufacturers' instructions. Gel lanes were normalized to equivalent volume. M = molecular weight marker; L = lysate load.

Figure 20. Dependable reusability of Thermo Scientific "**Pierce**" **Glutathione Superflow Agarose.** Glutathione Superflow Agarose was challenged with multiple rounds of protein purification and column cleaning. An equilibrated 1 mL column (column diameter = 0.5 cm) packed with Glutathione Superflow Agarose and attached to a GE AKTA FPLC system was challenged with 10 mL of *E. coli* lysate containing overexpressed GST-Syk at a flow rate of 0.5 mL/min. After loading GST-Syk onto the column, it was washed with 10 column volumes (CV) of wash buffer followed by 10 CV of elution buffer containing 10 mM reduced glutathione. After GST-Syk protein elution, the column was treated to 5 clean-in-place cycles. One clean-in-place cycle consists of treating the column with 2 CV of 6 M guanidine-HCl, 5 CV of wash buffer, and 4 CV of 70% ethanol, followed with 5 CV of wash buffer. Purification followed by 5 clean-in-place cycles was repeated 5 times, for a total of 6 lysate challenges (cycle 1, 6, 11, 16, 21, and 26) and 25 clean-in-place treatments. GST protein yield and purity were measured by absorbance at 280 nm and the chromatogram was depicted for each of the 5 lysate challenges. Elution fractions were also analyzed by SDS-PAGE, which also revealed pure, consistent GST-Syk. M = molecular weight marker.

Biotin affinity purification

We offer a variety of Thermo Scientific[™] resins for the purification of biotinylated or desthiobiotinylated proteins, peptides, and other molecules. These resins are available in multiple pack sizes, as well as in spin columns, kits,

Table 18. Biotin-binding affinity resin selection guide.

FPLC cartridges, and coated plates. Different biotin-binding ligands are available based on elution conditions or level of purity.

Ligand	Specificity	Nonspecific binding	Recommended product	High-throughput screening	High-throughput batch	Batch	Pilot	Process
Avidin	Low	High	Pierce Avidin Agarose Resin			1		
Monomeric avidin	High	Low	Pierce Monomeric Avidin Resin			1		
			Pierce Streptavidin Magnetic Beads	1				
Streptavidin	Higher	Lower	Pierce Streptavidin Agarose Resin			1		
			Pierce High Capacity Streptavidin Agarose Resin			~		
			Pierce NeutrAvidin Agarose Resin			\checkmark		
NeutrAvidin	Highest	Lowest	Pierce High Capacity NeutrAvidin Agarose Resin			~		

Comparison of binding capacity to biotinylated BSA

Supplier	Cartridge size	Biotinylated BSA bound
Pierce High Capacity Streptavidin	1 mL	12.9 mg
Chromatography Cartridge	5 mL	75.9 mg
GE HiTrap Streptavidin HP	1 mL	10.7 mg
GE HITTAP Streptaviuli HP	5 mL	(not offered in 5 mL size)
Pierce High Capacity NeutrAvidin	1 mL	12.8 mg
Chromatography Cartridge	5 mL	70 mg

Figure 21. Binding capacity of Thermo Scientific[™] High Capacity Streptavidin Chromatography Cartridges is comparable to that of HiTrap columns. Columns were overloaded with biotinylated BSA and purified per manufacturers' instructions. Binding capacity was determined using the Pierce BCA Protein Assay Kit.

Note: Capacity for the avidin resins was determined indirectly by subtracting the unbound biotinylated BSA present in the flow-through fractions from the total amount applied to the column.

Activated supports for custom immobilization

We offer a variety of Thermo Scientific[™] activated supports and accessories for the immobilization of proteins, antibodies, and other molecules. These resins or magnetic beads are available separately or in convenient kits. Different reactive chemistries are available to optimize immobilization based on the ligand properties.

Table 19. Activated support selection guide.

Target functional group	Ideal for	Recommended product	High-through- put screening	High-through- put batch	Batch	Pilot	Pro- cess
		Pierce NHS-Activated Magnetic Beads	\checkmark				
NH ₂	Proteins Antibodies	Pierce NHS-Activated Agarose			1		
		AminoLink Plus Coupling Resin			1		
SH	Proteins Peptides Antibodies	SulfoLink Coupling Resin			1		
СНО	Glycoproteins	GlycoLink Coupling Resin			1		
СООН	Polyclonal antibodies Unmodified peptides	CarboxyLink Coupling Resin			1		

For more information or to view additional products and pack sizes,

go to thermofisher.com/proteinpurification

Immunoprecipitation (IP), co-IP, and pull-down using magnetic beads

Fast and reproducible sample processing with high protein yield and low nonspecific binding

Magnetic beads are the most rapidly growing method for IP and pull-down assays because they are a faster, easier, and more efficient way of pulling down the proteins than nonmagnetic methods (Figure 22).

Thermo Fisher Scientific offers a wide variety of conjugated magnetic beads including the highly referenced Invitrogen[™] Dynabeads[™] magnetic beads, and the economical Pierce[™] magnetic beads, to meet most application and budget needs.

Highlights:

- Low background—little-to-no nonspecific binding, and no preclearing
- **Highly sensitive**—magnetic beads are the ideal choice for sensitive applications such as IP of low-abundance proteins
- Antibody savings—all binding occurs on the smooth outer surface of the beads, conserving precious antibodies and providing a more cost-efficient solution per sample

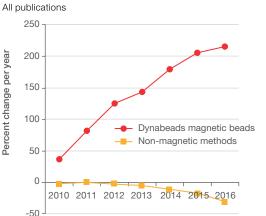
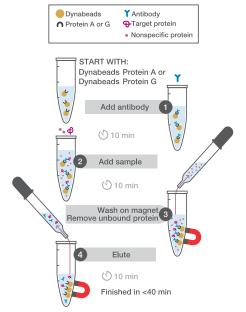



Figure 22. Immunoprecipitation publication growth (Dynabeads magnetic beads compared to nonmagnetic methods). (Source: January 2017 Google Scholar)

- Fast and easy—magnetic beads offer a rapid IP protocol, with no centrifugation or preclearing steps
- **Flexible**—products for IP, co-IP, and pull-down assays; ideal for both manual and automated protocols
- **Compatible**—magnetic beads can be used in multiple workflows, including western blotting, mass spectrometry, and qPCR (for ChIP analysis)

Figure 23. Immunoprecipitation in <40 minutes. Dynabeads magnetic beads precoupled with Protein A or Protein G act as a suspendable solid support that can be fixed by the use of a magnet. This allows for simple and efficient antibody capture, followed by immunoprecipitation of your pure target peptides, proteins, protein complexes, or other antigens.

Published papers on immunoprecipitation All publications

Table 20. Choose your isolation strategy and find your product.

Choose this if you use	Surface coating or ligand on the magnetic beads	Target	Non- specific binding	IP protocol time	Main benefits for IP	Products
	Protein A, G, A/G, or L	Primary antibodies from most species. Protein A, G, and L bind different antibody species and subclasses with different specificities	Low	Dynabeads: <40 minutes Pierce beads: 130–180 min	 Dynabeads—fastest, easiest protocol with low nonspecific binding and high yield and reproducibility Pierce Magnetic IP-MS Kit (Protein A/G) validated for mass spectrometry workflows Pierce Crosslink kit includes DSS crosslinker 	Dynabeads Protein A Dynabeads Protein A Immunoprecipitation Kit Dynabeads Protein G Dynabeads Protein G Immunoprecipitation Kit Pierce Classic Magnetic IP/Co-IP Kit Pierce Protein A/G Magnetic IP/Co-IP Kit Pierce Crosslink Magnetic IP/Co-IP Kit Pierce Magnetic IP-MS Kit (Protein A/G) Pierce Protein L Magnetic Beads
Unconjugated primary antibody	Secondary antibodies	Mouse IgG or rabbit IgG	Low	Dynabeads: <40 min	 Fast and easy protocol Low nonspecific binding Specific binding of mouse or rabbit IgGs 	Dynabeads M-280 Sheep-Anti Mouse IgG Dynabeads M-280 Sheep-Anti Rabbit IgG
	Epoxy- and NHS- activated beads*	Any protein ligand (e.g., antibody, peptide)	Ultralow	Dynabeads: Ab coupling time: overnight co-IP protocol time: 30–40 min Pierce beads: Ab coupling time: 30–60 min Protocol time: 120 min	 Covalent coupling of the Ab gives ultralow nonspecific binding No need for crosslinking Gentle and efficient co-IP of even large protein complexes 	Dynabeads Antibody Coupling Kit Dynabeads Co-Immunoprecipitation Kit Pierce NHS-activated magnetic beads
Biotinylated antibody	Streptavidin	Any biotinylated antibody or ligand	Low	Dynabeads: <40 minutes Pierce beads: 60–120 min	 Binds any biotinylated protein For samples high in soluble IgGs Recombinant Ab lacking the Fc region 	Dynabeads MyOne Streptavidin T1 Dynabeads M-280 Streptavidin Pierce Streptavidin Magnetic beads Pierce Magnetic IP-MS Kit (Streptavidin)
Recombinant protein	Fusion tags	Different beads bind proteins with the following tags: His, GST, HA, c-Myc	Low	Dynabeads His-tag beads: ~25 min Pierce beads: ~70 min	 Purify many different proteins incorporated with the same tag No need for antibodies 	Dynabeads His-Tag Isolation and Pulldown Kits HisPur Ni-NTA Magnetic Beads Pierce HA-Tag Magnetic IP/Co-IP Kit Pierce c-Myc-Tag Magnetic IP/Co-IP Kit

* See more choices in surface-activated Dynabeads products for the binding and capture of additional targets.

Choose these products if you use unconjugated primary antibodies—your choice of antibody-binding products depends on your downstream application, or if you don't want the antibody co-eluted with your target protein.

Protein A, G, and A/G beads are most commonly used for IP and co-IP applications since unconjugated primary antibodies towards the protein target bind directly to the coated beads in a short and simple incubation step. Epoxy beads are often used to obtain ultra-low nonspecific binding, or to avoid cross-linking, since the antibody is covalently coupled to the beads and not eluted off with the target protein. The Dynabeads Epoxy beads and Co-IP Kit (including optimized buffers) are recommended for co-IP applications involving larger protein complexes. Choose these products if you use biotinylated antibodies—your best choice when using a biotinylated antibody with streptavidin-coated beads for IP:

- If you have a sample rich in soluble IgGs
- If you have a recombinant antibody lacking Fc regions
- Streptavidin magnetic beads can also be used for pull-down applications using a biotinylated protein as bait

Choose these products if you have a recombinant protein (fusion tag)-the

most popular fusion tags for recombinant protein expression are covered by Pierce and Dynabeads products. HA-tag and c-Myc tags are ideal for IP/co-IP applications while His-tag and and GST-tagged proteins are utilized for pull-down assays.

26

ads Protein G

Millipore

OX ON

Low-pH

elution

25 kDa

IP and co-IP strategies using unconjugated primary antibodies

Proteins A, G, A/G, and L have different structures and number of binding sites that influence each ligand's binding affinity to various antibody targets (e.g., antibody subclass or animal species). These ligands result in the effective immunoprecipitation of specific antibodies from a crude sample. Alternate strategies include secondary

3

Rad

BIO O,St

Protein SE Prote antibodies to target species specific antibodies, or direct immobilization of target specific antibodies using an activated support. Both convenient kits and stand-alone magnetic beads are available. Protocols for automated, high-throughput IP are available using the Thermo Scientific[™] Kingfisher[™] Flex Purification System.

GE

Healthcare

G A Millipore

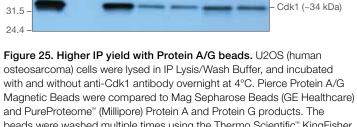
G А

Thermo Scientific

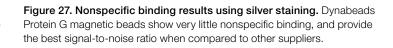
Pierce

A/G

U2OS


cell

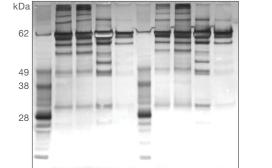
lvsate


47.7

Protein yield using Dynabeads Protein G and Pierce Protein A/G magnetic beads

Figure 24. Protein yield results using western blotting. Dynabeads Protein G magnetic beads have the best overall performance in yield, capacity, and nonspecific binding.

beads were washed multiple times using the Thermo Scientific[™] KingFisher Flex Instrument and then eluted with SDS-PAGE reducing sample buffer for 10 minutes at room temperature. The eluates were resolved by SDS-PAGE and analyzed by western blot for Cdk1.



Nonspecific binding results using Dynabeads Protein G

I DS

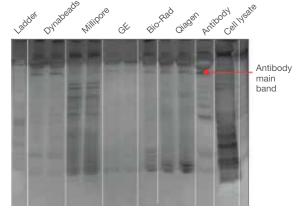
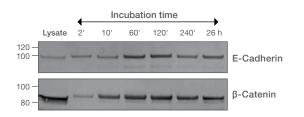
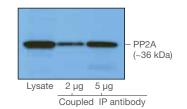

elution

Figure 26. Low nonspecific binding with manual and automated immunoprecipitation. Immunoprecipitation from HeLa cell lysate (Lysate) with Dynabeads Protein G bound to an irrelevant antibody (Ab) using either manual (Man) or automated protocol (Aut) on the KingFisher Flex instrument. Mild or denaturing elution conditions were used followed by silver staining (SilverQuest[™] Silver Staining Kit) of gels (Invitrogen[™] Bolt[™] 4-12% Bis Tris Plus). The automated protocol had just as low nonspecific binding as the manual protocol using both elution conditions.



Std Aut Man Ab Lysate Std Aut Man Ab Lysate



IP effectiveness using the direct immobiliization of antibodies

Figure 28. IP/co-IP results using the Dynabeads[™] Co-

Immunoprecipitation Kit. The kit was used to co-precipitate E-cadherin and β -catenin from a cell lysate. Antibody towards E-cadherin was covalently bound to the Epoxy-based Dynabeads to achieve high yield and ultra-low nonspecific binding without the need for cross-linking. Incubation times as low as 10 minutes were sufficient to achieve good yields of both proteins. The buffers in the kits were optimized in collaboration with members of the Dr. Michael Routs lab at Rockefeller University, NY.

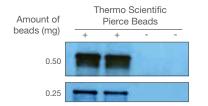


Figure 29. Excellent immunoprecipitation results with the Thermo Scientific Pierce Direct Magnetic IP/Co-IP Kit. Following the kit procedure, anti-PP2A antibody (2 μg and 5 μg) was coupled to 25 μL of Thermo Scientific Pierce NHS-Activated Magnetic Beads and then used to immunoprecipitate PP2A from 0.5 mg aliquots of an A431 (human epidermoid carcinoma) cell lysate. The eluates were resolved by SDS-PAGE and analyzed by western blot for PP2A. The Pierce NHS-Activated Magnetic Beads effectively immunoprecipitated PP2A using as little as 2 μg of antibody.

IP, co-IP, and pull-down strategies using biotinylated antibodies

Streptavidin-based magnetic beads exploit the strong association between avidin and biotin molecules, a nearly irreversible bond. Streptavidin magnetic beads are ideal for the immunoprecipitation of antigens using biotinylated antibodies from a wide variety of sources. The effective co-IP of interaction complexes be achieved using biotinylated antibodies, as well as for the capture of interacting proteins in pull-down assays using biotinylated "bait" proteins. Both convenient kits and stand-alone magnetic beads are available. Protocols for automated, high-throughput IP are available using the Kingfisher Flex Purification System.

Benching binding capacity and elution efficiency using Pierce Streptavidin magnetic beads and the IP-MS Kit

Figure 30. High-capacity immunoprecipitation results with Pierce Streptavidin Magnetic Beads. MOPC cell lysate (0.75 mg per sample) was incubated overnight at 4°C with and without 10 µg biotinylated Grp94 antibody. Pierce Streptavidin Magnetic Beads (Cat. No. PI88817) were added to a 96 deep-well plate (0.5 mg or 0.25 mg per well). Using the KingFisher 96 Instrument, the beads were washed with Tris-buffered saline containing 0.1% Tween 20, incubated 1 hour with the antigen sample/ antibody mixture, washed three times and then eluted for 10 minutes at 96°C with SDS-PAGE reducing sample buffer. Eluates were resolved by SDS-PAGE and analyzed by western blot with anti-Grp94 antibody.

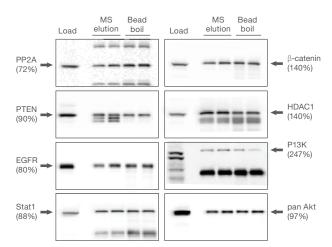
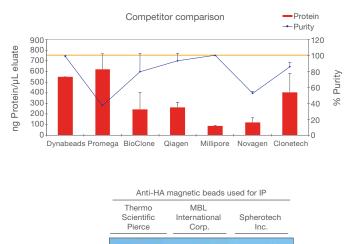


Figure 31. The Thermo Scientific[™] Pierce[™] MS-Compatible Magnetic IP Kit (streptavidin) allows for effective target capture and elution. Percentages beneath target indicate elution efficiency compared to bead boil. The elutions were analyzed by western blot. Antibodies were labeled with the Pierce Antibody Biotinylation Kit for IP and used with the kit to immunoprecipitate target proteins from cell lysates.


Table 22. List of co-immunoprecipitated proteins.The Pierce MS-Compatible Magnetic IP Kits showed effective co-IP of interacting proteins for
CTNNB1, EGFR, PI3KCA, CBP, NOTCH1, AKT, AKT1, SMAD4, and/or ARAF targets. These are known protein interactions reported in previous studies.Panel A:Streptavidin Kit.Panel B: Protein A/G Kit.

Panel A		Panel B	
IP target	Co-IP proteins	IP target	Co-IP proteins
CTNNB1	CTNNA1, CDH2, CDH11, APC, ARVCF, PKP4	CTNNB1	CTNNA1, CDH11, CDH2, CTNND1
EGFR	PRKDC, PFKP, SL C3A2, RPN1	EGFR	TUBB, TUBA1A, HSPA1A
PI3KCA	PIK3R2, PIK3R1	PI3KCA	PIK3R2, PIK3R1
СВР	PSMC5, ACTA2, DDX5	NOTCH1	PTBP1, C14orf166
AKT	VIM, HSPA8, TUBA1A	AKT1	AKT2, ACTB
SMAD4	EEF1A1, SQSTM1	ARAF	YWHAG, STK25

IP, co-IP, and pull-down strategies using recombinant tags

Recombinant tags such as 6xHis, GST, c-myc, and HA enable the IP, co-IP, or pull-down of recombinant proteins or protein complexes. Pull-down is achieved using immobilized Ni-NTA, cobalt, or glutathione. IP and co-IP can be performed using immobilized anti-c-Myc or anti-HA antibodies. Both convenient kits and stand-alone magnetic beads are available. Protocols for automated, high-throughput IP are available using the Kingfisher Flex Purification System.

IP and pull-down results using Dynabeads and Pierce magnetic beads

GST-PI3K(SH2)-HA►

Figure 33. Better immunoprecipitation results with Thermo Scientific[™] Pierce[™] Anti-HA Magnetic Beads. Using a KingFisher Flex Instrument with 96 deep-well plates, 25 μL of Pierce Anti-HA Magnetic Beads, Anti-HA-tag Magnetic Beads (MBL International Corp.), and SPHERO[™] Rabbit Anti-HA Magnetic Beads (Spherotech Inc.) were used to immunoprecipitate GST-PI3K-SH2-HA from 50 μg of *E. coli* lysate in duplicate. Captured protein was eluted with 0.1 M glycine, pH 2.0, and then resolved by SDS-PAGE and analyzed by western blot for the HA-tagged protein. Figure 32. High yield and purity of polyhistidine-tagged proteins

in 20 minutes. The Dynabeads His-Tag Isolation and Pulldown product was used to purify GFP-labeled polyhistidine-tagged proteins in an *E. coli* lysate and compared to similar products from different suppliers. GFP fluorescence was used to detect the protein concentration (yield) and an Agilent[™] Bioanalyzer[™] instrument was used to measure the purity. The Dynabeads kit provides the best combination of reproducible high yield with excellent purity, in only 20 minutes.

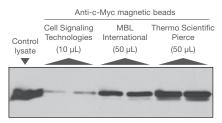


Figure 34. Better immunoprecipitation results with Thermo Scientific[™] Pierce[™] Anti-c-Myc Magnetic Beads. Green *Renilla* luciferase c-Myc fusion protein was expressed in 293T cells. For IP, identical aliquots of the cell lysate were incubated in duplicate for one hour at room temperature with anti-c-Myc magnetic beads from each manufacturer. For all conditions, IP products were eluted identically using low-pH buffer. Eluted fractions (25 µL each) were separated by 12% SDS-PAGE, transferred to PVDF membranes, and detected via anti-c-Myc antibody (Cat. No. MA1-980), goat anti-mouse secondary antibody, and chemiluminescent substrate (Cat. No. Pl34080).

For more information or to view additional products, go to **thermofisher.com/immunoprecipitation**

Magnetic stands

Multiple formats for low- to highthroughput sample processing

Highlights:

- **Optimized**—developed and certified for use with Dynabeads and Pierce magnetic beads
- Easy to handle-designed with ergonomics in mind
- More choices—different formats to accommodate different volume and throughput needs

Invitrogen[™] DynaMag[™] magnets isolate any target in combination with magnetic beads. To help reduce waiting time, these powerful magnets quickly pull the bead-bound target to the tube wall. DynaMag magnets help to ensure optimal working positions and are functionally adapted to suit various workflows.

The Invitrogen[™] DynaMag[™]-2 Magnet (shown above) holds up to 16 standard 1.5–2 mL tubes and is optimal for working volumes of 10 to 2,000 µL. The top rack can be quickly removed from the magnet in the base, ready for vortexing, rotation, or manual sample shaking.

Plate-based magnetic stands, such as the Invitrogen[™] DynaMag[™]-96 series magnets, are ideal for manual and automated work, with a footprint size that is the same as that of a 96-well plate. The recommended working volume is 5–200 µL.

DynaMag-96 Side Magnet DynaMag-96 Bottom Magnet DynaMag-96 Side Skirted Magnet

Learn more at thermofisher.com/magnets

KingFisher Flex Purification System

Optimized platform for automated, high-throughput IP-MS applications

The KingFisher Flex Purification System is designed for automated transfer and processing of magnetic particles in microplate format. The patented technology of this system is based on the use of magnetic rods covered with a disposable, specially designed tip comb and plates. The instrument functions without any dispensing or aspiration parts or devices. Additionally, it can be integrated with liquid handling, robotics, and plate-stacking instruments to fully automate a workflow for higher throughput.

Highlights:

- Fully automated system yields high-speed purification of proteins
- High-throughput system processes up to 96 samples (with volumes between 20 and 5,000 μL), in less than 20 min
- Open and flexible system lets the customer use any magnetic particle-based kit to meet the application demands
- Easy-to-use Thermo Scientific[™] BindIt[™] Software provides instrument control, protocol creation, and modification
- Ready-made protocols for different types of applications are available

Samples and reagents, including magnetic particles, are dispensed into the plates according to the corresponding instructions. Ready-made protocols are available on the Web for review and loading. Bindlt Software can be used to create and run protocols.

Learn more at thermofisher.com/kingfisher

Ordering information

Product	Quantity	Cat. No.
Protein extraction reagents and subcellu	ular fractiona	tion kits
M-PER Mammalian Protein Extraction Reagent	250 mL	PI78501
T-PER Tissue Protein Extraction Reagent	500 mL	PI78510
Pierce IP Lysis Buffer	100 mL	PI87787
RIPA Lysis Buffer	250 mL	PI89901
Pierce IP Lysis Buffer	100 mL	PI87787
NE-PER Nuclear and Cytoplasmic Extraction Reagents	75 mL	PI78835
Mem-PER Plus Membrane Protein Extraction Kit	300 mL	PI89842
Mitochondria Isolation Kit for Cultured Cells	115 mL	P189874
Subcellular Protein Fractionation Kit for Cultured Cells	35 mL	PI78840
B-PER Complete Bacterial Protein Extraction Reagent	250 mL	PI89821
To view additional pack sizes and products, g thermofisher.com/proteinextraction	go to	
Inhibitor cocktails and tablets		
Halt Protease Inhibitor Cocktail (100X)	1 mL	PI87786
Halt Protease Inhibitor Cocktail (100X), EDTA-Free	1 mL	PI87785
Pierce Protease Inhibitor Mini Tablets	30 tablets	PIA32953
Pierce Protease Inhibitor Tablets	20 tablets	PIA32963
Pierce Protease Inhibitor Mini Tablets, EDTA-free	30 tablets	PIA32955
Pierce Protease Inhibitor Tablets, EDTA-free	20 tablets	PIA32965
Halt Phosphatase Inhibitor Cocktail (100X)	1 mL	PI78420
Pierce Phosphatase Inhibitor Mini Tablets	20 tablets	PIA32957
Halt Protease and Phosphatase Inhibitor Cocktail (100X)	1 mL	PI78440
Halt Protease and Phosphatase Inhibitor Cocktail (100X), EDTA-Free	1 mL	PI78441
Pierce Protease and Phosphatase Inhibitor Mini Tablets	30 tablets	PIA32959
Pierce Protease and Phosphatase Inhibitor Mini Tablets, EDTA-free	30 tablets	PIA32961
To view additional pack sizes and products, g thermofisher.com/inhibitorcocktails	go to	
Detergents		
Tween-20 Surfact-Amps Detergent Solution	6 x 10 mL	PI28320
Tween-20 Surfact-Amps Detergent Solution	50 mL	PI85113
Tween-80 Surfact-Amps Detergent Solution	6 x 10 mL	PI28328
Tween-80 Surfact-Amps Detergent Solution	50 mL	PI28329
	0 10 11	Diocod 4

Triton X-100 Surfact-Amps Detergent Solution 6 x 10 mL PI28314 Triton X-100 Surfact-Amps Detergent Solution 50 mL PI85111 Triton X-114 Surfact-Amps Detergent Solution 6 x 10 mL PI28332 NP-40 Surfact-Amps Detergent Solution 6 x 10 mL PI28324 NP-40 Surfact-Amps Detergent Solution 50 mL PI85124 Brij-35 Surfact-Amps Detergent Solution 6 x 10 mL PI28316 Brij-35 Surfact-Amps Detergent Solution 50 mL PI85117 Brij-58 Surfact-Amps Detergent Solution 6 x 10 mL PI28336

To view additional pack sizes and products, go to

thermofisher.com/detergents

Product	Quantity	Cat. No.
Dialysis devices, cassettes, and flasks		
Slide-A-Lyzer MINI Dialysis Devices, 10K MWCO, 0.1 mL	50 devices	PI69570
Slide-A-Lyzer MINI Dialysis Devices, 10K MWCO, 0.5 mL	25 devices	PI88401
Slide-A-Lyzer MINI Dialysis Devices, 10K MWCO, 2 mL	25 devices	PI88404
Slide-A-Lyzer G2 Dialysis Cassettes, 7K MWCO, 0.5 mL	10 cassettes	PI87727
Slide-A-Lyzer G2 Dialysis Cassettes, 7K MWCO, 3 mL	10 cassettes	PI87728
Slide-A-Lyzer G2 Dialysis Cassettes, 0.5K MWCO, 0.5 mL	8 cassettes	PI87729
Slide-A-Lyzer G2 Dialysis Cassettes, 3K MWCO, 3 mL	6 cassettes	PI87730
Slide-A-Lyzer G2 Dialysis Cassettes, 15K MWCO, 15 mL	6 cassettes	PI87731
Slide-A-Lyzer G2 Dialysis Flask, 10K MWCO, 250 mL	4 flasks	PI87762

To view additional pack sizes and MWCOs, go to **thermofisher.com/dialysis**

Desalting products

3 1 1 1 1		
Zeba Spin Desalting Columns, 7K MWCO, 75 μL	25 columns	PI89877
Zeba Spin Desalting Columns, 7K MWCO, 0.5 mL	25 columns	PI89882
Zeba Spin Desalting Columns, 7K MWCO, 2 mL	25 columns	PI89890
Zeba Spin Desalting Columns, 7K MWCO, 5 mL	25 columns	PI89892
Zeba Spin Desalting Columns, 7K MWCO, 10 mL	25 columns	PI89894
Zeba 96-well Spin Desalting Plates, 7K MWCO	2 plates	PI89807
Zeba Chromatography Cartridges, 7K MWCO, 1 mL	5 cartridges	PI89934
Zeba Chromatography Cartridges, 7K MWCO, 5 mL	5 cartridges	PI89935
Zeba Spin Desalting Columns, 40K MWCO, 75 µL	25 columns	PI87764
To view additional pack sizes and MWCOs, go to		

thermofisher.com/desalting

Protein concentrators Pierce Protein Concentrators PES, 25/pkg PI88513 10K MWCO, 0.5 mL Pierce Protein Concentrator PES, PI88517 24/pkg 10K MWCO, 2-6 mL Pierce Protein Concentrator PES, 24/pkg PI88528 10K MWCO, 5-20 mL Pierce Protein Concentrator PES, 4/pkg PI88535 10K MWCO, 20-100 mL

To view additional pack sizes and MWCOs, go to thermofisher.com/concentrators

Quantity

40 reactions

1 mL

Cat. No.

10001D

10006D

10018D

Ordering information

Product	Quantity	Cat. No.		
Strong cation exchange purification resins				
POROS XS Resin	10 ml	PI82071		
Strong anion exchange purification resin	IS			
POROS XQ Resin	10 ml	PI82073		
POROS HQ Resin	10 ml	PI82077		
Antibody purification resins				
Protein A Plus Agarose	5 mL	PI22811		
POROS MabCapture A Select	15 mL	PI82080		
Protein G Plus Agarose	2 mL	PI22851		
POROS MabCapture G Select	15 mL	PI82083		
Pierce Protein A/G Magnetic Agarose Beads	1 mL	PI78609		
Protein A/G Plus Agarose	2 mL	PI20423		
POROS MabCapture A/G Select	15 mL	PI82086		
Protein L Agarose	2 mL	PI20510		
Melon Gel Monoclonal IgG Purification Kit	Kit	PI45214		
Recombinant protein purification resins	-			
HisPur Ni-NTA Magnetic Beads	2 mL	PI88831		
Pierce Ni-NTA Magnetic Agarose Beads	1 mL	PI78605		
HisPur Ni-NTA Agarose Resin	10 mL	PI88221		
HisPur Ni-NTA Superflow Agarose	10 mL	PI25214		
HisPur Cobalt Agarose Resin	10 mL	PI23214		
HisPur Cobalt Agarose Hesin HisPur Cobalt Superflow Agarose	10 mL	PI25228		
Pierce Glutathione Magnetic Agarose Beads	1 mL	PI23228		
Pierce Glutathione Agarose	10 mL	PI16100		
Pierce Glutathione Superflow Agarose	10 mL	PI25236		
Pierce Anti-c-Myc Agarose	2 mL	PI20168		
Pierce Anti-HA Agarose	1 mL	PI26181		
Biotin binding purification resins and ma		1120101		
Pierce Streptavidin Magnetic Beads	1 mL 2 mL	PI88817 PI20357		
High Capacity Streptavidin Agarose Resin	5 mL	PI20337		
High Capacity NeutrAvidin Agarose Resin	5 mL	PI29202		
Monomeric Avidin Agarose Resin		FIZUZZO		
Activated support resins and magnetic b		Diagona		
Pierce NHS-Activated Agarose, Dry	1 g	PI26196		
AminoLink Plus Coupling Resin	10 mL	PI20501		
SulfoLink Coupling Resin	10 mL	PI20401		
CarboxyLink Coupling Resin	25 mL	PI20266		
GlycoLink Immobilization Kit	10 columns	PI88941		
Pierce NHS-Activated Magnetic Beads	1 mL	PI88826		
Dynabeads M-270 Epoxy	60 mg	14301		
Dynabeads M-280 Tosylactivated	2 mL	14203		
Dynabeads MyOne Tosylactivated	2 mL	65501 14205D		
Dynabeads M-270 Carboxylic Acid	2 mL	14305D		
Dynabeads MyOne Carboxylic Acid	2 mL	65011		
Dynabeads M-270 Amine	2 mL	14307D		
Pierce NHS-Activated Agarose, Dry	1 g	PI26196		
AminoLink Plus Coupling Resin	10 mL	PI20501		
GlycoLink Immobilization Kit	10 columns	PI88941		
SulfoLink Coupling Resin	10 mL	PI20401		
CarboxyLink Coupling Resin	25 mL	PI20266		

Starter Fack		
Dynabeads Protein A and Magnet Starter Pack	40 reactions	10013D
Dynabeads Protein G	1 mL	10003D
Dynabeads Protein G Immunoprecipitation K	lit 2 mL	10007D
Dynabeads Protein G IP Kit and Magnet Starter Pack	40 reactions	10019D
Dynabeads Protein G and Magnet Starter Pack	40 reactions	10014D
Dynabeads Protein A/Protein G and Magnet Starter Pack	40 reactions	10015D
Pierce Protein A/G Magnetic Beads	1 mL	PI88802
Pierce Classic Magnetic IP/Co-IP Kit	40 reactions	PI88804
Pierce Crosslink Magnetic IP/Co-IP Kit	40 reactions	PI88805
Pierce MS-Compatible Magnetic IP Kit (Protein A/G)	40 reactions	PI90409
Pierce Protein L Magnetic Beads	1 mL	PI88849
Dynabeads M-280 Sheep Anti-Mouse IgG	2 mL	11201D
Dynabeads M-280 Sheep Anti-Rabbit IgG	2 mL	11203D
Dynabeads Antibody Coupling Kit	1 kit	14311D
Dynabeads Co-Immunoprecipitation Kit	40 reactions	14321D
Pierce Direct Magnetic IP/Co-IP Kit	40 reactions	PI88828
Dynabeads M-280 Streptavidin	2 mL	60210
Dynabeads MyOne Streptavidin C1	2 mL	65001
Pierce MS-Compatible Magnetic IP Kit (Streptavidin)	40 reactions	PI90408
Dynabeads His-Tag Isolation and Pulldown	2 mL	10103D
Pierce HA-Tag Magnetic IP/Co-IP Kit	40 reactions	PI88838
Pierce c-Myc-Tag Magnetic IP/Co-IP Kit	40 reactions	PI88844
Immunoprecipitation kits using agarose	resin	
Pierce Classic IP Kit	50 reactions	PI26146
Pierce Crosslink IP Kit	50 reactions	PI26147
Pierce Direct IP Kit	50 reactions	PI26148
Pierce Co-Immunoprecipitation Kit	50 reactions	PI26149
GlycoLink IP Kit	25 reactions	PI88943
Pierce Biotinylated Protein Interaction Pull-Down Kit	25 reactions	PI21115
EZ-Link Desthiobiotinylation and Pull-Down Kit	5 reactions	PI16138
Pierce c-Myc-Tag IP/Co-IP Kit	25 reactions	PI23620
Pierce HA-Tag IP/Co-IP Kit	25 reactions	PI26180
Pierce GST Protein Interaction Pull-Down Kit	25 reactions	PI21516
Pierce His Protein Interaction Pull-Down Kit	25 reactions	PI21277
To view odditional cool, since and such that	ia ta	

Product

Starter Pack

Dynabeads Protein A

Immunoprecipitation using magnetic beads

Dynabeads Protein A Immunoprecipitation Kit 2 mL

Dynabeads Protein A IP Kit and Magnet

To view additional pack sizes and products, go to

To view additional pack sizes and products, go to thermofisher.com/proteinpurification

thermofisher.com/immunoprecipitation

Find out more at thermofisher.com/proteinprep

fisherscientific

In the United States:

For customer service, call 1-800-766-7000 To fax an order, use 1-800-926-1166 To order online: fishersci.com

In Canada:

For customer service, call 1-800-234-7437 To fax an order, use 1-800-463-2996 To order online: fishersci.ca

For Research Use Only. Not for use in diagnostic procedures. © 2016–2017 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. cOmplete and PhosSTOP are trademarks of Roche Life Sciences. SIGMAFAST is a trademark of Sigma Aldrich. BugBuster, ProteoExtract, PureProteome and Millipore are trademarks of Merck KGaA Darmstadt. ReadyPrep, BioSpin, and Micro BioSpin are trademarks of Bio-Rad Laboratories, Inc. Tween is a trademark of Croda International PLC. Capto, SpinTrap, MiniTrap, Sepharose, and MabSelect are trademarks of GE Healthcare. Magne is a trademark of Promega Corporation. SPHERO is a trademark of Spherotech, Inc. BioVision is a trademark of BioVision, Inc. GenScript is a trademark of GenScript, Inc. **BN0526161 0517**

